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Motivating Example

The table below summarizes parent report

of child asthma status among one state’s

participants in the National Survey of Children’s

Health from 2007.

Race/Ethnicity Asthma No Asthma

Black Non-Hisp 1 11

Multi Non-Hisp 7 46

Other Non-Hisp 2 28

White Non-Hisp 109 1314

Hispanic 11 184
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Motivating Example

Consider estimating the rate of asthma among

Black Non-Hisp children.

A reasonable estimate might be 1/12, or 8.3%.

However, we might also wish to perform one

or more of the following three tasks:

• Provide a 95% confidence interval for the

rate.

• Test a null hypothesis that the rate equals,

say, 5%.

• Test a null hypothesis that the rate among

Black Non-Hisp children is no different from

the rate among White Non-Hisp children.
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Motivating Example

Regarding the first task, we might think to

apply the familiar formula from an introductory

statistical methods course:

p̂ ± 1.96
√

p̂(1 − p̂)/n,

where p̂ is the estimated rate and n is the

sample size.

Doing so for the present example, we obtain

(1/12)±1.96
√

(1/12)(11/12)/12 = 0.083±0.156.

4



Motivating Example

This result is unreasonable. A negative rate is

not possible, so a 95% confidence interval for

the rate should not include negative numbers.

Generally speaking, the familiar formula

provides reasonable results when

np̂(1 − p̂) ≥ 10,

although some authors are more generous and

suggest 5 rather than 10 as a cutoff.
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Motivating Example

However, in this example we have

np̂(1 − p̂) = 0.92.

Likewise, performing the other two tasks —

testing a null hypothesis that the rate equals

5% and testing a null hypothesis that the rate

among Black Non-Hisp children is no different

from the rate among White Non-Hisp children

— using familiar testing procedures from an

introductory statistical methods course requires

np̂(1 − p̂) ≥ 10,

which is not the case here.
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Motivating Example

Note that the requirement

np̂(1 − p̂) ≥ 10

effectively imposes two conditions:

First, p̂ cannot be too small, which is to say

that the event cannot be too rare.

Second, n cannot be too small, which is to say

that the population cannot be too narrow.
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Motivating Example

Handling the first issue (rare events) was the

subject of a presentation that I gave two years

ago. Materials from that presentation are at

{www.richardcharnigo.net/RE/index.html}.

Handling the second issue (narrow populations)

is the subject of today’s presentation. Before

we proceed further, some comments on semantics

may be helpful.
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Motivating Example

A narrow population may be one for which

there are, quite literally, very few individuals.

However, more loosely speaking, we may regard

a population as narrow if its size in relation to

a larger population is small enough that even

a good-sized sample for the larger population

will translate into a small n for the narrow

population. With this understanding, a small

n becomes a working definition of a narrow

population.

Another way of framing the distinction between

the first issue (rare events) and the second

issue (narrow populations) is that the former

is about small numerators while the latter is

about small denominators.
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Binomial Approach for Inference on a
Rate

Let us first address how one can test a null

hypothesis that the rate equals, say, 5%.

Knowing how to perform this task will provide

a crucial insight on how to create a 95%

confidence interval for the rate.

If the null hypothesis were true, then the

number of events in a random sample of size

12 would follow a binomial distribution with

parameters 12 (number of trials) and 0.05

(“success” probability on each trial). So,

our hypothesis test will evaluate whether the

observed number of events — in our example,

one — represents an extreme occurrence for

such a binomial distribution.
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Binomial Approach for Inference on a
Rate

Please refer to {MCHNarrowPopulations.xls}.

Row 51 of Sheet “BinomialRate” indicates

that the probability of observing 1 or fewer

events in a random sample of size 12 would

be 0.882 if the null hypothesis were true, while

the probability of observing 1 or more events

would be 0.460.

The p-value for the hypothesis test — called

an exact test by statisticians because it does

not rely on large-sample normal approximations

— is defined to be double the minimum

of three numbers: the two aforementioned

probabilities and 0.5. The doubling handles a

two-sided alternative hypothesis, while the 0.5

ensures that the p-value is not greater than 1.
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Binomial Approach for Inference on a
Rate

In the present example, the p-value is 0.919.

We do not reject the null hypothesis.

Intuitively, the probability of observing 1 or

fewer events in a random sample of size 12 was

not so small to persuade us that the event rate

was larger than 5%, while the probability of

observing 1 or more events in a random sample

of size 12 was not so small to persuade us that

the event rate was smaller than 5%.

12



Binomial Approach for Inference on a
Rate

In {MCHNarrowPopulations.xls}, the Sheet

“BinomialRate” can be revised to accommodate

a different data set. First change the “1”

and “12” in the BINOMDIST function used to

define the entries of Column C to the observed

number of events and the sample size in the

different data set.

Then change the “0” and “12” in the BINOMDIST

function used to define the entries of Column

D to the observed number of events less one

and the sample size.
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Binomial Approach for Inference on a
Rate

Here is a second example, with which we will

illustrate revision of Sheet “BinomialRate” in

{MCHNarrowPopulations.xls} to accommodate

a different data set.

In one state, the National Survey of Children’s

Health from 2007 reported that 5 out of 16

children aged 5 or younger with emotional,

behavioral, or developmental issues had injuries

requiring medical attention, compared to 6 out

of 56 children without such issues.

Let us test the null hypothesis that the rate

of injuries requiring medical attention among

children aged 5 or younger with emotional,

behavioral, or developmental issues is 5%.
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Binomial Approach for Inference on a
Rate

Change the “1” and “12” in the BINOMDIST

function used to define the entries of Column

C to “5” and ”16”. Then change the “0”

and “12” in the BINOMDIST function used

to define the entries of Column D to “4” and

“16”.

We obtain a p-value of 0.002, and so we reject

the null hypothesis. This is because 5 out of

16 is too large to accord with a 5% event rate.

As indicated in Column D, there is less than a

0.001 probability of observing 5 or more events

in a random sample of size 16 if the event rate

is only 5%.
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Binomial Approach for Inference on a
Rate

To construct a 95% confidence interval, we

can use the principle that p0 should be included

in the confidence interval if and only if we

would accept the null hypothesis that the rate

is p0. Statisticians refer to this principle as

inversion.

See Column F on Sheet “BinomialRate” in

{MCHNarrowPopulations.xls} for illustration of

the inversion principle. A 95% confidence

interval for the rate of asthma among Black

Non-Hisp children is 0.003 to 0.384. The

confidence interval is wide, reflecting great

uncertainty based on the small sample size of

12, but no negative numbers are included.
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Hypergeometric Approach to
Comparing Rates

Let us now address the task of how to test

a null hypothesis that the asthma rate among

Black Non-Hisp children is no different from

the rate among White Non-Hisp children or,

equivalently, the ratio of the rates equals one.

Estimates of these rates are 1/12 = 8.3% and

109/1423 = 7.7% respectively. However, as

noted earlier,

np̂(1 − p̂) = 0.92 < 10

for the Black Non-Hisp children. So, the

familiar testing procedures from an introductory

statistical methods course are not applicable.
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Hypergeometric Approach to
Comparing Rates

Therefore, we will now describe a testing

procedure — called Fisher’s exact test — that

may be used in this situation.

If the null hypothesis were true, then given

random samples of 12 Black Non-Hisp and

1423 White Non-Hisp children with 110 asthma

events in total, the number of asthma events

among the Black Non-Hisp children should

follow a hypergeometric distribution with

parameters 12 (number of Black Non-Hisp

children), 110 (total number of asthma events),

and 1435 (total number of children).
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Hypergeometric Approach to
Comparing Rates

As shown on Sheet “HypergeometricRates”

of {MCHNarrowPopulations.xls}, there would

be a 0.383 probability of no asthma events

among the Black Non-Hisp children, a 0.384

probability of one event, a 0.175 probability of

two events, and so forth.

Fisher’s exact test works by adding up all

probabilities less than or equal to the probability

associated with the actually observed number

of asthma events among Black Non-Hisp children.
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Hypergeometric Approach to
Comparing Rates

The sum of these probabilities is the p-value

for testing the null hypothesis of equal asthma

rates.

Since the actually observed number of asthma

events among Black Non-Hisp children was 1,

and since the associated probability of 0.384 is

larger than every other probability, the p-value

in this example turns out to be 1. There is

no basis for rejection of the null hypothesis.

Intuitively, this is because 8.3% and 7.7% are

quite close.
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Hypergeometric Approach to
Comparing Rates

To revise Sheet “HypergeometricRates” in

{MCHNarrowPopulations.xls} to accommodate

a different data set, change the “12” and

“110” and “1435” in the HYPGEOMDIST

function used to define the entries of Column

C to the smaller sample size, the total number

of events in the two samples, and the sum of

the two sample sizes in the different data set.

Then change the “.38431” used to define

the entries of Column D to that entry of

Column C corresponding to the actual number

of observed events. Make sure to round up.
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Hypergeometric Approach to
Comparing Rates

Considering our second example, in which 5

out of 16 children aged 5 or younger with

emotional, behavioral, or developmental issues

had injuries requiring medical attention, compared

to 6 out of 56 children without such issues,

let us test the null hypothesis that the rates

of injuries requiring medical attention are the

same for children with emotional, behavioral,

or developmental issues as for children without

such issues.

Referring to Sheet “HypergeometricRates” in

{MCHNarrowPopulations.xls}, change the “12”

and “110” and “1435” to “16” and “11” and

“72”. Then change the “.38431” to “.04693”.
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Hypergeometric Approach to
Comparing Rates

The p-value from Fisher’s exact test is 0.059,

so we do not reject the null hypothesis.

We come close, however, because the 5 out of

16 is 31.2% compared to 10.7% for the 6 out

of 56.
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Bayesian Methods

All of the inferential procedures described thus

far are frequentist. Roughly speaking, this

means we use only the sample at hand to make

inferences about the population from which

the sample is drawn.

Moreover, parameters describing that population

are viewed as fixed, even though they are

unknown to the researcher. This is why we

make statements like “We are 95% confident

that the rate is between 10% and 30%” rather

than “There is a 95% probability that the rate

is between 10% and 30%”.
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Bayesian Methods

In contrast, Bayesian inference uses both the

sample at hand and a set of prior beliefs to

make inferences about the population from

which the sample is drawn.

Moreover, parameters describing that population

are viewed as themselves random, and so we

can actually make statements like “There is a

95% probability that the rate is between 10%

and 30%”.
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Bayesian Methods

To provide an intuitive motivation for Bayesian

inference, suppose that I flip a coin and observe

a heads.

Frequentist inference would then estimate the

probability of obtaining a heads with that coin

as 100% (1 success in 1 trial).

However, Bayesian inference might estimate

the probability of obtaining a heads with that

coin as close to 50%, drawing upon prior

beliefs in the form of having in the past

observed flips come up heads and tails in

roughly equal numbers with other coins.
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Bayesian Methods

More explicitly, we can quantify prior beliefs

by imagining an auxiliary thought experiment

in which, say, a coin was flipped 200 times to

yield 100 heads.

Combining the prior beliefs (100 successes in

200 trials) with the results from the sample

at hand (1 success in 1 trial), we may adopt

101/201 = 50.2% as a single number estimate

of the probability of obtaining a heads.

Or, if we are really fervent about a Bayesian

interpretation and regard the probability of

obtaining a heads as itself random, then 50.2%

is a measure of central tendency for the

distribution of the probability of obtaining a

heads.
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Bayesian Methods

Now let us apply Bayesian inference to the task

of providing a 95% confidence interval for the

asthma rate among Black Non-Hisp children.

The first question we face is how to specify

prior beliefs. This can be done in one of several

ways. For instance:

• We can use current year’s data from other

minority race/ethnicity groups in the state.

• We can use previous years’ data from Black

Non-Hisp children in the state.

• We can use current year’s data from Black

Non-Hisp children in neighboring states.
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Bayesian Methods

All three of the above options have drawbacks:

• The first assumes a perhaps unrealistic

homogeneity across minority race/ethnicity groups.

• The second disregards the redundancy between

the previous years’ data and the current year’s

data.

• The third assumes a perhaps unrealistic

geographic homogeneity. However, we will go

with the third option for illustrative purposes.
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Bayesian Methods

The current year’s data from Black Non-

Hisp children in neighboring states provides

estimated rates of 0, 0, 0.191, 0.163, 0, and

0.222, as indicated on Sheet “Bayesian” of

{MCHNarrowPopulations.xls}.

The corresponding estimated rates for White

Non-Hisp children are 0.054, 0.057, 0.056,

0.037, 0.068, and 0.058.
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Bayesian Methods

Using what statisticians call the method of

moments, which I have automated on Sheet

“Bayesian” of {MCHNarrowPopulations.xls},

the neighboring states’ estimated rates suggest

the following numbers of prior successes and

failures: 0.63 and 5.96 for Black Non-Hisp,

29.24 and 502.71 for White Non-Hisp.

Note that statisticians use “success” to refer

to the occurrence of some usually adverse

event, in this case asthma, which contrasts

with how we use “success” in everyday speech.
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Bayesian Methods

Note, first, that prior successes and failures do

not actually have to be integers and, second,

that prior successes and failures are essentially

downweighted versions of the actual numbers

of successes and failures from the neighboring

states.

This downweighting distinguishes the Bayesian

approach from a simple aggregation of the

actual numbers from the neighboring states, so

that the actual numbers from the neighboring

states have some impact on our inferences but

not as much impact as the actual numbers

from the state of interest.
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Bayesian Methods

Combining the prior successes and failures with

the observed successes and failures, our single

number estimates for the asthma rates among

Black Non-Hisp and White Non-Hisp children

respectively are 8.8% (slightly higher than the

frequentist estimate 8.3%) and 7.1% (slightly

lower than the frequentist estimate 7.7%).

Given the prior successes and failures along

with the observed successes and failures, we

postulate that the asthma rate has a beta

distribution with first parameter equal to the

sum of the prior and observed successes plus

one and second parameter equal to the sum

of the prior and observed failures plus one.

This beta distribution is called a posterior

distribution.
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Bayesian Methods

Then, as illustrated on Sheet “Bayesian” of

{MCHNarrowPopulations.xls}, we randomly draw

1000 realizations from the posterior distribution

of the asthma rate for Black Non-Hisp and

1000 realizations from the posterior distribution

of the asthma rate for White Non-Hisp. We

also form ratios from these random draws.

Note that, since these draws are random, Excel

will recalculate them whenever the spreadsheet

is manipulated. If one wished to avoid that,

one could copy and paste the draws and select

“Values Only” in the “Paste Options” menu.
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Bayesian Methods

We obtain a 95% confidence interval — actually,

Bayesians would call it a 95% credible interval

— for the asthma rate among Black Non-

Hisp children by taking the 2.5 and 97.5

percentiles of the random draws from the

posterior distribution of the asthma rate for

Black Non-Hisp. In other words, we take the

middle 95% of the random draws to define the

95% credible interval.

The 95% credible interval will be different

every time the spreadsheet is manipulated. As

I write this script, I see 0.026 and 0.288 as

the lower and upper limits. While still quite

wide, this 95% credible interval is narrower

than the 0.003 to 0.384 obtained earlier using a

frequentist approach. Thus, adding information

about prior beliefs reduced our uncertainty

about the asthma rate for Black Non-Hisp.
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Bayesian Methods

We also obtain a 95% credible interval for the

asthma rate among White Non-Hisp children

(0.060 to 0.082) and for the ratio of asthma

rates (0.383 to 4.192).

As for hypothesis testing, from a strict Bayesian

perspective the null hypothesis will be false

with probability one. This relates to the idea

from an introductory statistics course that the

probability of a continuous random variable

landing exactly on a specific number is zero.

Here the specific number is the value proposed

for the parameter under the null hypothesis.
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Bayesian Methods

That said, if the credible interval does not

contain the value proposed for the parameter

under the null hypothesis, we can say that the

posterior distribution is incompatible with the

null hypothesis in the sense that the parameter

is unlikely to be close to the value proposed

under the null hypothesis.

For example, the asthma rate among White

Non-Hisp children is unlikely to be close to

0.05, but we cannot make a similar assertion

for the asthma rate among Black Non-Hisp

children.
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Bayesian Methods

In {MCHNarrowPopulations.xls}, revising Sheet

“Bayesian” to accommodate a new data set

will entail changing the entries under “Estimates

from Adjacent States” to reflect the new prior

beliefs as well as the entries by “Observed

Successes” and “Observed Failures” to reflect

the new data set.

This will yield new entries by “Beta Parameter

1” and “Beta Parameter 2”, which should

then be input into the BETAINV functions

of Columns J and K in lieu of 2.633897,

17.96344, 139.2405, and 1817.706.
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Advantages and Disadvantages of
Probability Modeling

Strengths of the probability modeling methods

based on the Binomial and Hypergeometric

distributions are as follows:

• One avoids having to specify a source of prior

beliefs, which would entail some element of

subjectivity.

• Many people are already familiar with the

interpretations of frequentist confidence intervals

and hypothesis tests.

• Besides my implementations of these methods

in Excel, one may employ built-in implementations

of these methods in statistical software packages

such as SAS (via PROC FREQ).
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Advantages and Disadvantages of
Probability Modeling

Weaknesses of the probability modeling methods

based on the Binomial and Hypergeometric

distributions are as follows:

• By not using information about prior beliefs,

one increases the uncertainty associated with

one’s inferences.

• Fisher’s exact test is geared toward the

very special null hypothesis that the rate ratio

equals one.

• While the interpretations of frequentist

confidence intervals are familiar, they are awkward

since they implicitly rely on a notion of repeated

sampling.

40



Advantages and Disadvantages of
Bayesian Analysis

Strengths of the Bayesian methods are as

follows:

• By using information about prior beliefs, one

reduces the uncertainty associated with one’s

inferences.

• One’s inference about a rate ratio is not

confined to the question of whether the rate

ratio equals one.

• The interpretations of Bayesian credible

intervals are less awkward than the interpretations

of frequentist confidence intervals.
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Advantages and Disadvantages of
Bayesian Analysis

Weaknesses of the Bayesian methods are as

follows:

• One must specify a source of prior beliefs,

which entails some element of subjectivity.

• Strictly speaking, a Bayesian perspective

does not accommodate testing a null hypothesis

against a two-sided alternative. So, one’s

inferences are based on the credible intervals.

• I am not aware of a statistical software

package that implements these Bayesian methods

as I have done in Excel without requiring some

substantial programming by the user.
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Conceptual Differences between
Frequentist and Bayesian Inference

The conceptual differences between frequentist

and Bayesian inference are roughly summarized

as follows:

Frequentist inference views a population

parameter as a fixed but unknown number

that is estimated using solely the data from

a sample drawn from that population.

Both hypothesis testing and confidence intervals

are part and parcel of frequentist inference.
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Conceptual Differences between
Frequentist and Bayesian Inference

Bayesian inference views a population parameter

as a random quantity whose distribution is

estimated using not only the data from a

sample drawn from that population but also

prior beliefs, which in practice may involve data

from samples drawn from other populations.

Moreover, because a continuous random variable

does not exactly equal a specific value with

positive probability, under typical circumstances

a null hypothesis is false with probability one.

As such, Bayesian inference emphasizes credible

intervals.
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Confidentiality Issues

Some data sets with narrow populations may,

despite not containing traditional identifiers

such as names or social security numbers, allow

for some individuals to be identified by their

neighbors or colleagues.

Although this is somewhat unlikely to occur

with survey data (because who completed

the survey will not generally be known), this

may occur if we are speaking of data from a

population rather than from a sample.

In other words, confidentiality may be a big

concern when we quite literally have a narrow

population.
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Confidentiality Issues

Because confidentiality may be a big concern,

data sets from narrow populations may be

summarized rather than presented in their

entireties.

For instance, records for individuals may not

be made available, but numbers of events in

each of various strata may be furnished along

with their respective denominators.

In some cases, even reporting the numbers of

events may be revelatory. Then the numbers

of events may be suppressed as well.
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What now?

You are invited to visit the website

{www.richardcharnigo.net/RE/index.html},

which contains this presentation as well as the

one I gave two years ago on rare events.

You are also invited to review whatever parts of

the Ancillary Notes may interest you. They are

contained in the same file as this presentation.

The Ancillary Notes present some technical

details for the binomial and hypergeometric

distributions, some further comments about

Bayesian inference, and some references for

supplementary reading.
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Ancillary Notes

Binomial distribution

Let n be a positive integer (number of trials)

and p a positive number less than 1 (success

probability). A random variable X has the

binomial distribution with parameters n and p

if

P(X = j) =
(n

j

)
pj(1 − p)n−j

for any integer j between 0 and n, where(
n
j

)
— read “n choose j” — is defined as

n!/[j!(n − j)!].

Above, X = j is the event that there are j

successes in the n trials.
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Ancillary Notes

Hypergeometric distribution

Let n be a positive integer (number of people

in smaller of two samples), a be a positive

integer (number of events in two samples), and

m be a positive integer (number of people in

two samples) greater than n and a. A random

variable X has the hypergeometric distribution

with parameters n, a, and m if

P(X = j) =
(a

j

)(m − a

n − j

)
/
(m

n

)

for any integer j between max{0, a + n − m}

and min{a, n}.

Above, X = j is the event that j out of the a

events occur in the smaller of the two samples.
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Ancillary Notes

Bayesian inference

Let p denote a success probability. Necessarily

p is between 0 and 1. The probability of

observing a successes and n − a failures in n
trials is

(n

a

)
pa(1 − p)n−a.

This is proportional, in p, to

pa(1 − p)n−a.

If our prior beliefs are tantamount to b successes

and m − b failures in m trials, then the prior

beliefs can be expressed as
(m

b

)
pb(1 − p)m−b.

This is proportional, in p, to

pb(1 − p)m−b.

Note that the last expression is well-defined

even if b and m − b are not integers.
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Ancillary Notes

To combine the observations with the prior

beliefs, we multiply:

pa(1−p)n−a×pb(1−p)m−b = pa+b(1−p)n+m−a−b.

Next, we note that

C(a, b, n, m)pa+b(1 − p)n+m−a−b

defines the Beta probability distribution with

parameters a+b+1 and n+m−a−b+1, where

C(a, b, n, m) — which depends on a, b, n, m but

not p — ensures that the area under the curve

from p = 0 to p = 1 is one.
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Ancillary Notes

Hence, combining the observations with the

prior beliefs leads to the postulate that the

posterior distribution of p should be Beta with

parameters a + b + 1 and n + m − a − b + 1.

Finally, to specify the prior successes and prior

failures using the method of moments, we use

the formulas

b = x̄[x̄(1 − x̄)/s2 − 1]

and

m = [x̄(1 − x̄)/s2 − 1],

where x̄ and s2 denote the sample mean and

variance of the estimated rates on which the

prior beliefs rely.
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Ancillary Notes

References

A good general reference for statistical

methods is Fundamentals of Biostatistics, Sixth

Edition, by Bernard Rosner (Duxbury, 2006).

Equations 7.44 (hypothesis test) and 6.20

(confidence interval) present the binomial

approach for inference about a rate.

Equation 10.11 (Fisher’s exact test) presents

the hypergeometric approach to comparing

rates.

53



Ancillary Notes

A good general reference for Bayesian

inference is Bayesian Data Analysis by Gelman,

Carlin, Stern, and Rubin (Chapman & Hall/CRC,

1995).

The approach presented herein – called empirical

Bayes — is described in Section 5.1 and

represents an approximation to the hierarchical

Bayesian analysis described in Section 5.3.
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