STA 623 - Fall 2013 - Dr. Charnigo

In-Class Assessment

This assessment is a strictly individual activity. Textbooks, notes, calculators, computers, and technology with Internet access are prohibited. Record what you want graded in the blue book.
[20] 1. Let F be a real-valued function of a real variable.
[10] a. Under what conditions is F the cumulative distribution function of a discrete random variable?
[10] b. Suppose that F is, in fact, the cumulative distribution function of a discrete random variable. Consider the following statement: "The composition $\{F \circ F\}$ defined by $\{F \circ F\}(x):=$ $F[F(x)]$ is also the cumulative distribution function of a discrete random variable." Is the statement true or false? If true, provide a proof. If false, furnish a counterexample.
[40] 2. Let f be a real-valued function of a real variable.
[10] a. Under what conditions is f the probability density function of a continuous random variable?
[10] b. Suppose that f is defined by $f(x):=C x^{-2} 1_{|x| \geq 1}$, where C is a constant. What choice of C yields a probability density function?
[10] c. Let X have the probability density function in part b. Show that $E[X]$ does not exist finitely.
[10] d. Let X have the probability density function in part b. Show that $E[\cos (t X)]$ does exist finitely for any $t \in \mathbb{R}$. Hint: You are not asked to evaluate $E[\cos (t X)]$, just establish finiteness.
[40] 3. Suppose that X is a binomial random variable with parameters $n \in\{1,2, \ldots\}$ and $p \in(0,1)$. Suppose that Y has the same distribution as X but that Y is independent of X. Put $U:=X$ and $V:=X+Y$.
[10] a. Find the joint probability mass function of U and V. Hint: The bivariate transformation formula is not applicable.
[10] b. Find the marginal probability mass function of V. Hint: A difficult summation can be handled through multiplication and division by $\binom{2 n}{v}$.
[10] c. Find the conditional probability mass function of U given that $V=v \in\{0,1, \ldots, 2 n\}$.
[10] d. Find the conditional probability mass function of V given that $U=u \in\{0,1, \ldots, n\}$.

