STA 623 - Fall 2013 - Dr. Charnigo

Section 1.1: Set Theory

Sample space. Suppose that we conduct an experiment. The set of all possible outcomes from that experiment is referred to as the sample space. When convenient, we use S as a symbol for the sample space.

Example (sample space). Suppose that I flip a coin four times. Critique the following statement: "The sample space is $\{0,1,2,3,4\}$, where the number refers to how many times the coin lands on heads."

Event. Suppose that every element of a set A is an element of the sample space S, which we write as $A \subset S$. Then we refer to A as an event.

Example (event). Critique the following statement: "Events are elements of the sample space."

Union, intersection, and complementation operators. Suppose that $A, B \subset$ S. We define the union $A \cup B$ as the set containing all elements of S present in A or B or both. We define the intersection $A \cap B$ as the set containing all elements of S present in both A and B. We define the complementation A^{c} as the set containing all elements of S not present in A.

Example (union, intersection, and complementation operators).

 Suppose that I roll a six-sided die. The sample space is $\{1,2,3,4,5,6\}$, where the number refers to the result of the roll. Let A be the event that I roll an odd number and B be the event that I roll a multiple of 3 . What are $A \cup B$, $A \cap B, A^{c}, A \cup A^{c}, A \cap A^{c}$, and $\left(A \cup A^{c}\right)^{c}$?Properties of operators. Suppose that $A, B, C \subset S$. We have the following.

1. Commutativity: $A \cup B=B \cup A, A \cap B=B \cap A$.
2. Associativity: $A \cup(B \cup C)=(A \cup B) \cup C, A \cap(B \cap C)=(A \cap B) \cap C$.
3. Distributivity: $A \cap(B \cup C)=(A \cap B) \cup(A \cap C), A \cup(B \cap C)=$ $(A \cup B) \cap(A \cup C)$.
4. DeMorgan laws: $(A \cup B)^{c}=A^{c} \cap B^{c},(A \cap B)^{c}=A^{c} \cup B^{c}$.

Example (properties of operators). Critique the following attempt at proof of the first DeMorgan law: "Suppose that $B=A^{c}$. On the one hand, $A \cup B=S$ and $(A \cup B)^{c}=S^{c}=\emptyset$. On the other hand, $B^{c}=A$ and $A^{c} \cap B^{c}=A^{c} \cap A=\emptyset$. This completes the proof."

Proving that two sets are the same. There is a standard way to prove that two sets are the same: show that each is a subset of the other. For such proofs the following notation is helpful: \in means "is an element of", while \notin means "is not an element of".

Example (proving that two sets are the same). Let us prove the first DeMorgan law. Suppose that $x \in(A \cup B)^{c}$. Then $x \notin A \cup B$. Hence $x \notin A$ and $x \notin B$. So $x \in A^{c}$ and $x \in B^{c}$. Hence $x \in A^{c} \cap B^{c}$. This shows that $(A \cup B)^{c} \subset A^{c} \cap B^{c}$. Starting from $x \in A^{c} \cap B^{c}$ and working our way back to $x \in(A \cup B)^{c}$ shows that $A^{c} \cap B^{c} \subset(A \cup B)^{c}$.

General unions and intersections. Suppose that $A_{\gamma} \subset S$ for all $\gamma \in \Gamma$, where Γ is some non-empty index set. Then we define $\cup_{\gamma \in \Gamma} A_{\gamma}$ to contain all elements of S present in at least one of the A_{γ} and $\cap_{\gamma \in \Gamma} A_{\gamma}$ to contain all elements of S present in all of the A_{γ}. Common choices for Γ include $\{1,2\}$, which reproduces our earlier definitions, and $\{1,2,3, \ldots\}$, which gives rise to so-called countable unions and intersections.

Example (general unions and intersections). Suppose that $A_{i}=$ $[0, i]$ for $i \in\{1,2,3, \ldots\}$. What are $\cup_{i=1}^{\infty} A_{i}$ and $\cap_{i=1}^{\infty} A_{i}$? For generic $A_{1}, A_{2}, A_{3}, \ldots \subset S$, show that $\cap_{n=1}^{\infty} \cup_{i=n}^{\infty} A_{i}$ consists of all elements of S that belong to infinitely many of $A_{1}, A_{2}, A_{3}, \ldots$ and that $\cup_{n=1}^{\infty} \cap_{i=n}^{\infty} A_{i}$ consists of all elements of S that belong to all but finitely many of $A_{1}, A_{2}, A_{3}, \ldots$..

Mutually exclusive and collectively exhaustive. Suppose that $A_{\gamma} \subset S$ for all $\gamma \in \Gamma$, where Γ is some non-empty index set. If $A_{i} \cap A_{j}=\emptyset$ for all unequal $i, j \in \Gamma$, then we say that the A_{γ} are mutually exclusive. If $\cup_{\gamma \in \Gamma} A_{\gamma}=S$, then we say that the A_{γ} are collectively exhaustive. If the A_{γ} are both mutually exclusive and collectively exhaustive, then we say that they constitute a partition of S.

