
STA 623 – Fall 2013 – Dr. Charnigo

Section 1.2: Basics of Probability Theory

Axiomatic foundations. Consider the simple experiment of flipping a coin.

The sample space S is the finite set {Heads, Tails}. If we were to repeat

this experiment an indefinitely large number of times, then we might find

that about half of the flips resulted in Heads while about half of the flips

resulted in Tails. This might motivate us to define the probability of get-

ting a Heads on a single flip as 1/2 and likewise to define the probability of

getting a Tails on a single flip as 1/2. In other words, we might define the

probability of an event in an experiment based on the event’s relative fre-

quency over an indefinitely large number of repetitions of that experiment.

Let P (A) denote the probability of an event A ⊂ S. We want the follow-

ing conditions or “axioms” to be satisfied for any events A,A1, A2, . . . ⊂ S.

1. P (A) ≥ 0.

2. P (S) = 1.

3. P (∪∞
i=1Ai) =

∑∞
i=1 P (Ai) whenever Ai ∩ Aj = ∅ for i 6= j.

Unfortunately, there are complications when S is uncountably infinite.

These complications are circumvented by requiring that probabilities be de-

fined and axioms hold not for all events but only for events belonging to a

special collection of subsets of S called a “sigma algebra” or a “sigma field”.

Formally, a sigma field B is a collection of subsets of S satisfying the

following three properties.

a. ∅ ∈ B.

b. If A ∈ B, then Ac ∈ B.

c. If A1, A2, . . . ∈ B, then ∪∞
i=1Ai ∈ B.

Example (Axiomatic foundations). Suppose that S = {1, 2, 3, 4, 5, 6}.

What is the smallest sigma field containing {1}, {2}, {3}, {4}, {5}, and

{6}? How can we define probabilities so that the axioms are satisfied?
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Calculus of probabilities. Several useful results follow from the axioms. We

assume that A,B, C1, C2, . . . ∈ B.

4. P (∅) = 0.

5. P (A) ≤ 1.

6. P (Ac) = 1− P (A).

7. P (B ∩ Ac) = P (B)− P (B ∩ A).

8. P (A ∪B) = P (A) + P (B)− P (A ∩ B).

9. If A ⊂ B, then P (A) ≤ P (B).

10. P (∪∞
i=1Ci) ≤

∑∞
i=1 P (Ci).

11. If C1, C2, . . . is a partition, then P (A) =
∑∞

i=1 P (A ∩ Ci).

Example (Calculus of probabilities). Let us prove result 10. Put

D1 := C1, D2 := C2 ∩Cc
1, D3 := C3 ∩Cc

1 ∩Cc
2, D4 := C4 ∩Cc

1 ∩Cc
2 ∩Cc

3, and

so forth. (Are D1, D2, . . . ∈ B?)

Then ∪∞
i=1Di = ∪∞

i=1Ci. (Suppose that x ∈ ∪∞
i=1Ci. Let j be the smallest

positive integer for which x ∈ Cj. Then x ∈ Dj, so that x ∈ ∪∞
i=1Di. This

shows that ∪∞
i=1Ci ⊂ ∪∞

i=1Di. How do we know that ∪∞
i=1Di ⊂ ∪∞

i=1Ci?)

Moreover, Di ∩ Dj = ∅ for i 6= j. (Suppose that x ∈ Di ∩ Dj. Then

x ∈ Ci and x ∈ Cj. If i > j, then x ∈ Cj implies x /∈ Cc
j and x /∈

Ci ∩ Cc
1 ∩ · · · ∩ Cc

i−1 = Di. This is a contradiction, so there is no such x.

Likewise, we obtain a contradiction if i < j.)

By axiom 3 we have P (∪∞
i=1Di) =

∑∞
i=1P (Di). By result 9 we have

P (Di) ≤ P (Ci) for i ∈ {1, 2, . . .}. Since ∪∞
i=1Di = ∪∞

i=1Ci, we conclude that

P (∪∞
i=1Ci) = P (∪∞

i=1Di) =
∑∞

i=1P (Di) ≤
∑∞

i=1 P (Ci).

Counting techniques. How many ways are there to select r objects from a

collection of n objects, where r and n (> r) are positive integers? The an-

swer depends on whether objects can be replaced and on whether the order

in which objects are selected matters.
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First consider the situation in which objects can be replaced and the or-

der in which objects are selected matters. An example of this is choosing a

four-digit PIN number. Here we have r = 4 and n = 10. The same digit

can appear more than once (3934 is a valid four-digit PIN number), and the

order of the digits matters (3934 is not the same as 9334). In this example

we see readily that there are 10000 = 104 possibilities for a four-digit PIN

number. The general rule is that there are nr possibilities.

Now consider the situation in which objects cannot be replaced and the

order in which objects are selected matters. An example of this is being

asked to choose your favorite and second favorite colors from among red,

orange, yellow, green, blue, and purple. Here we have r = 2 and n = 6.

The same color cannot appear more than once (red cannot be both your

favorite and your second favorite color), and the order of the colors mat-

ters (red as a favorite and yellow as a second favorite is not the same as

yellow as a favorite and red as a second favorite). In this example we see

readily that there are 30 possibilities. The general rule is that there are

n× (n− 1)× · · · × (n− r + 1) = n!/(n− r)! possibilities.

Next consider the situation in which objects cannot be replaced and the

order in which objects are selected does not matter. An example of this is a

lottery ticket in which you win by matching the numbers on 6 balls drawn

without replacement from a vat containing 44 balls. Here we have r = 6 and

n = 44. The same number cannot appear twice (once ball 1 is removed from

the vat, ball 1 cannot be drawn from the vat again), and the order of the

numbers does not matter (if your lottery ticket shows 7, 11, 12, 18, 35, 42, you

still win if the balls are drawn in the order 42, 35, 18, 12, 11, 7). In this exam-

ple there are (44×43×42×41×40×39)/(6×5×4×3×2×1) = 44!/{6! 38!}

possibilities. The division by 6! avoids overcounting. The general rule is that

there are n!/{r!(n− r)!} =:
(

n
r

)

(read “n choose r”) possibilities.

Finally consider the situation in which objects can be replaced and the or-

der in which objects are selected does not matter. This situation is difficult

to describe succinctly (but see your textbook). The general rule, however,
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is simple: there are
(

n+r−1

r

)

possibilities.

Enumerating outcomes. Counting techniques are useful in problems where

S is finite and all elements of S are equally likely. Indeed, suppose that

S = {s1, s2, . . . , sn} for some positive integer n, that B consists of all sub-

sets of S, and that P ({si}) = 1/n for i ∈ {1, 2, . . . , n}. We apply probability

axiom 3 to find that P (A) =
∑

si∈A P ({si}) =
∑

si∈A 1/n = card(A)/card(S),

where card denotes the cardinality of (i.e., number of elements in) a set.

Example (enumerating outcomes). Consider being dealt a five-card

poker hand from a standard deck of 52 playing cards (there are 13 denomi-

nations — ace, king, queen, etc. — in each of 4 suits — hearts, diamonds,

spades, clubs). Assuming that the deck is well shuffled, what is the prob-

ability of being dealt a “full house” (a hand with a pair — two cards of

matching denomination — and a triple — three cards of matching denomi-

nation)?

To answer this question, we note that the order in which the cards are

dealt does not matter and that they are drawn from the deck without re-

placement. Letting S denote the set of all possible five-card poker hands,

we find that card(S) =
(

52

5

)

= 2598960.

Letting A denote the set of all five-card poker hands containing a pair

and a triple, we can find card(A) by noting that there are ways to

specify the denomination for the pair, ways to specify the denomina-

tion for the triple, ways to specify suits for the pair, and ways

to specify suits for the triple. Multiplying these numbers together gives

us card(A) = 3744, so that the probability of being dealt a full house is

card(A)/card(S) = 3744/2598960 ≈ 0.144%.
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