
STA 623 – Fall 2013 – Dr. Charnigo

Section 1.3: Conditional Probability and Independence

Definition of conditional probability. Let A and B be events that belong to

the sigma field. (Hereafter all events mentioned will belong to the sigma

field unless explicitly stated otherwise.) If P (B) > 0, then we define the

conditional probability of A given B as

P (A|B) := P (A ∩ B)/P (B).

In this context, we sometimes refer to P (A) as an unconditional probability.

Intuitively, P (A|B) is an updated version of P (A) given the knowledge that

event B has occurred.

Example (definition of conditional probability). Let A denote the

event that a randomly selected person smokes, and let B denote the event

that a randomly selected person develops lung cancer. Suppose that P (B) =

0.02, P (A) = 0.25, and P (B|A) = 0.05. Then P (A∩B) = ,

so that P (A|B) = . Moreover,

P (Ac∩B) = , so that P (Ac|B) = .

Useful results for conditional probabilities. Assuming that the axioms for

unconditional probabilities are satisfied and that P (D) > 0, we have the

following useful results for conditional probabilities.

1. P (A|D) ≥ 0.

2. P (S|D) = 1.

3. P (∪∞
i=1Ai|D) =

∑∞
i=1 P (Ai|D) whenever Ai ∩ Aj = ∅ for i 6= j.

4. P (∅|D) = 0.

5. P (A|D) ≤ 1.

6. P (Ac|D) = 1− P (A|D).

7. P (B ∩ Ac|D) = P (B|D)− P (B ∩ A|D).
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8. P (A ∪B|D) = P (A|D) + P (B|D)− P (A ∩B|D).

9. If A ⊂ B, then P (A|D) ≤ P (B|D).

10. P (∪∞
i=1Ci|D) ≤

∑∞
i=1 P (Ci|D).

11. If C1, C2, . . . is a partition, then P (A|D) =
∑∞

i=1
P (A ∩ Ci|D).

Example (useful results for conditional probabilities). To verify

result 3, we write

P (∪∞
i=1Ai|D) = P (∪∞

i=1(Ai∩D))/P (D) = =
∞∑

i=1

P (Ai|D).

The justification for the second equality is that, if Ai ∩ Aj = ∅, then

(Ai ∩D) ∩ (Aj ∩D) = (Ai ∩ Aj) ∩D = ∅ ∩D = ∅.

Iterating conditional probabilities. Suppose that P (B ∩ C) > 0. Then

P (A ∩B ∩ C) = P (A|B ∩ C)P (B ∩ C) = P (A|B ∩ C)P (B|C)P (C).

Moreover, since the left side is also equal to P (A ∩ B|C)P (C), we see that

P (A ∩B|C) = P (A|B ∩ C)P (B|C).

(How do we know that P (C) > 0?)

Bayes’ Theorem. Let A1, A2, . . . be a partition of S such that P (Ai) > 0 for

i ∈ {1, 2, . . .}. Then for any event B and any i ∈ {1, 2, . . .} we have

P (Ai|B) =
P (B|Ai)P (Ai)

∑∞
j=1

P (B|Aj)P (Aj)
.

A similar result also holds for a finite partition A1, A2, . . . , Ak,

P (Ai|B) =
P (B|Ai)P (Ai)

∑k
j=1

P (B|Aj)P (Aj)
.
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In particular, with k = 2 we have (upon a minor change in notation)

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
.

Example (Bayes’ Theorem). Bayes’ Theorem is obvious from the defini-

tion of conditional probability if we can verify that the denominator is P (B).

(How can we do this?) Equality of the denominator to P (B) is sometimes

called the Law of Total Probability.

Again, let A denote the event that a randomly selected person smokes,

and let B denote the event that a randomly selected person develops lung

cancer. As before, suppose that P (A) = 0.25 and P (B|A) = 0.05. But now

suppose that we are not given P (B). Rather, suppose that we are told that

99% of non-smokers do not develop lung cancer. How can we find P (A|B)

with just the information provided here?

Independence of two events. Suppose that A and B are events such that

0 < P (A) < 1, 0 < P (B) < 1, and P (A|B) = P (A). Thus, knowing that

B has occurred does not lead us to revise the probability that A will occur.

In this case, multiplying both sides of P (A|B) = P (A) by P (B) yields

P (A ∩ B) = P (A|B)P (B) = P (A)P (B).

Moreover, since P (A ∩ B) can also be expressed as P (B|A)P (A), we see

that P (B|A) = P (B). If any one of these three equivalent conditions holds

— P (A|B) = P (A) = P (A|Bc), P (A ∩ B) = P (A)P (B), or P (B|A) =

P (B) = P (B|Ac) — we say that A and B are independent. (How are we

able to go from P (A|B) = P (A) to P (A|B) = P (A) = P (A|Bc) and from

P (B|A) = P (B) to P (B|A) = P (B) = P (B|Ac)?)

If no restrictions on P (A) or P (B) are made, so we are not sure whether

P (A|B) and P (B|A) are defined, then we characterize independence by the

equation P (A ∩B) = P (A)P (B).
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If A and B are independent, then so are Ac and Bc, Ac and B, and A

and Bc.

Example (independence of two events). Let A and B be two events.

If P (A) = 0, then A and B are independent. (How do we know this?) If

P (B) = 1, then A and B are independent. (How do we know this?)

To verify that independence of A and B implies independence of Ac and

B, we write

P (Ac ∩B) = P (B)− P (A ∩ B) = P (B)− P (A)P (B) = P (B)P (Ac).

We can similarly prove that independence of A and B implies independence

of Ac and Bc and of A and Bc.

Suppose that I am dealt three cards (without replacement) from a well-

shuffled standard 52-card deck. Let C be the event that the suit of the

first card is diamonds, B be the event that the suit of the second card is

diamonds, and A be the event that the suit of the third card is diamonds.

Are C and B independent?

Independence of three or more events. Let A1, A2, . . . , An be events such

that for any subcollection Ai1, Ai2, . . . , Aik we have

P (∩k
j=1

Aij) =
k∏

j=1

P (Aij).

Then we say that A1, A2, . . . , An are independent. Independence of n events

thus entails not only

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)P (A2) · · ·P (An)

but also

P (A1 ∩ A2) = P (A1)P (A2), P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3),

P (A4 ∩ A8) = P (A4)P (A8), etc.
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