STA 623 - Fall 2013 - Dr. Charnigo

Section 1.3: Conditional Probability and Independence

Definition of conditional probability. Let A and B be events that belong to the sigma field. (Hereafter all events mentioned will belong to the sigma field unless explicitly stated otherwise.) If $P(B)>0$, then we define the conditional probability of A given B as

$$
P(A \mid B):=P(A \cap B) / P(B) .
$$

In this context, we sometimes refer to $P(A)$ as an unconditional probability. Intuitively, $P(A \mid B)$ is an updated version of $P(A)$ given the knowledge that event B has occurred.

Example (definition of conditional probability). Let A denote the event that a randomly selected person smokes, and let B denote the event that a randomly selected person develops lung cancer. Suppose that $P(B)=$ $0.02, P(A)=0.25$, and $P(B \mid A)=0.05$. Then $P(A \cap B)=$ so that $P(A \mid B)=$. Moreover, $P\left(A^{c} \cap B\right)=$, so that $P\left(A^{c} \mid B\right)=$

Useful results for conditional probabilities. Assuming that the axioms for unconditional probabilities are satisfied and that $P(D)>0$, we have the following useful results for conditional probabilities.

1. $P(A \mid D) \geq 0$.
2. $P(S \mid D)=1$.
3. $P\left(\cup_{i=1}^{\infty} A_{i} \mid D\right)=\sum_{i=1}^{\infty} P\left(A_{i} \mid D\right)$ whenever $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$.
4. $P(\emptyset \mid D)=0$.
5. $P(A \mid D) \leq 1$.
6. $P\left(A^{c} \mid D\right)=1-P(A \mid D)$.
7. $P\left(B \cap A^{c} \mid D\right)=P(B \mid D)-P(B \cap A \mid D)$.
8. $P(A \cup B \mid D)=P(A \mid D)+P(B \mid D)-P(A \cap B \mid D)$.
9. If $A \subset B$, then $P(A \mid D) \leq P(B \mid D)$.
10. $P\left(\cup_{i=1}^{\infty} C_{i} \mid D\right) \leq \sum_{i=1}^{\infty} P\left(C_{i} \mid D\right)$.
11. If C_{1}, C_{2}, \ldots is a partition, then $P(A \mid D)=\sum_{i=1}^{\infty} P\left(A \cap C_{i} \mid D\right)$.

Example (useful results for conditional probabilities). To verify result 3, we write

$$
P\left(\cup_{i=1}^{\infty} A_{i} \mid D\right)=P\left(\cup_{i=1}^{\infty}\left(A_{i} \cap D\right)\right) / P(D)=\quad=\sum_{i=1}^{\infty} P\left(A_{i} \mid D\right)
$$

The justification for the second equality is that, if $A_{i} \cap A_{j}=\emptyset$, then

$$
\left(A_{i} \cap D\right) \cap\left(A_{j} \cap D\right)=\left(A_{i} \cap A_{j}\right) \cap D=\emptyset \cap D=\emptyset .
$$

Iterating conditional probabilities. Suppose that $P(B \cap C)>0$. Then

$$
P(A \cap B \cap C)=P(A \mid B \cap C) P(B \cap C)=P(A \mid B \cap C) P(B \mid C) P(C)
$$

Moreover, since the left side is also equal to $P(A \cap B \mid C) P(C)$, we see that

$$
P(A \cap B \mid C)=P(A \mid B \cap C) P(B \mid C)
$$

(How do we know that $P(C)>0$?)

Bayes' Theorem. Let A_{1}, A_{2}, \ldots be a partition of S such that $P\left(A_{i}\right)>0$ for $i \in\{1,2, \ldots\}$. Then for any event B and any $i \in\{1,2, \ldots\}$ we have

$$
P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{j=1}^{\infty} P\left(B \mid A_{j}\right) P\left(A_{j}\right)} .
$$

A similar result also holds for a finite partition $A_{1}, A_{2}, \ldots, A_{k}$,

$$
P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{j=1}^{k} P\left(B \mid A_{j}\right) P\left(A_{j}\right)} .
$$

In particular, with $k=2$ we have (upon a minor change in notation)

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)} .
$$

Example (Bayes' Theorem). Bayes' Theorem is obvious from the definition of conditional probability if we can verify that the denominator is $P(B)$. (How can we do this?) Equality of the denominator to $P(B)$ is sometimes called the Law of Total Probability.

Again, let A denote the event that a randomly selected person smokes, and let B denote the event that a randomly selected person develops lung cancer. As before, suppose that $P(A)=0.25$ and $P(B \mid A)=0.05$. But now suppose that we are not given $P(B)$. Rather, suppose that we are told that 99% of non-smokers do not develop lung cancer. How can we find $P(A \mid B)$ with just the information provided here?

Independence of two events. Suppose that A and B are events such that $0<P(A)<1,0<P(B)<1$, and $P(A \mid B)=P(A)$. Thus, knowing that B has occurred does not lead us to revise the probability that A will occur. In this case, multiplying both sides of $P(A \mid B)=P(A)$ by $P(B)$ yields

$$
P(A \cap B)=P(A \mid B) P(B)=P(A) P(B)
$$

Moreover, since $P(A \cap B)$ can also be expressed as $P(B \mid A) P(A)$, we see that $P(B \mid A)=P(B)$. If any one of these three equivalent conditions holds $-P(A \mid B)=P(A)=P\left(A \mid B^{c}\right), P(A \cap B)=P(A) P(B)$, or $P(B \mid A)=$ $P(B)=P\left(B \mid A^{c}\right)$ - we say that A and B are independent. (How are we able to go from $P(A \mid B)=P(A)$ to $P(A \mid B)=P(A)=P\left(A \mid B^{c}\right)$ and from $P(B \mid A)=P(B)$ to $P(B \mid A)=P(B)=P\left(B \mid A^{c}\right)$?)

If no restrictions on $P(A)$ or $P(B)$ are made, so we are not sure whether $P(A \mid B)$ and $P(B \mid A)$ are defined, then we characterize independence by the equation $P(A \cap B)=P(A) P(B)$.

If A and B are independent, then so are A^{c} and B^{c}, A^{c} and B, and A and B^{c}.

Example (independence of two events). Let A and B be two events. If $P(A)=0$, then A and B are independent. (How do we know this?) If $P(B)=1$, then A and B are independent. (How do we know this?)

To verify that independence of A and B implies independence of A^{c} and B, we write

$$
P\left(A^{c} \cap B\right)=P(B)-P(A \cap B)=P(B)-P(A) P(B)=P(B) P\left(A^{c}\right)
$$

We can similarly prove that independence of A and B implies independence of A^{c} and B^{c} and of A and B^{c}.

Suppose that I am dealt three cards (without replacement) from a wellshuffled standard 52 -card deck. Let C be the event that the suit of the first card is diamonds, B be the event that the suit of the second card is diamonds, and A be the event that the suit of the third card is diamonds. Are C and B independent?

Independence of three or more events. Let $A_{1}, A_{2}, \ldots, A_{n}$ be events such that for any subcollection $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{k}}$ we have

$$
P\left(\cap_{j=1}^{k} A_{i_{j}}\right)=\prod_{j=1}^{k} P\left(A_{i_{j}}\right) .
$$

Then we say that $A_{1}, A_{2}, \ldots, A_{n}$ are independent. Independence of n events thus entails not only

$$
P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \cdots P\left(A_{n}\right)
$$

but also

$$
\begin{gathered}
P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) P\left(A_{2}\right), \quad P\left(A_{1} \cap A_{2} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right), \\
P\left(A_{4} \cap A_{8}\right)=P\left(A_{4}\right) P\left(A_{8}\right), \quad \text { etc. }
\end{gathered}
$$

