
STA 623 – Fall 2013 – Dr. Charnigo

Section 1.4: Random Variables

Motivating illustration. Suppose that we conduct a taste test in which each

of 10 grocery shoppers is asked to try “Brand A” and “Brand B” of peanut

butter and then state which one he or she prefers. Assuming that a response

of “no preference” is not allowed, the sample space S consists of 210 elements.

Two distinct elements of S are A,A,A,B,B,B,B,B,B,B and

B,B,B,B,B,B,B,A,A,A. However, if all we want to know is how many

people liked Brand A better versus how many people liked Brand B better,

then these two elements carry the same information: 3 people liked Brand A

better and 7 people liked Brand B better. In fact, we may consider defining

X to be the number of people who like Brand A better and just reporting

the observed value of X rather than the observed element of S.

Example (motivating illustration). Suppose that all elements of S in

the motivating illustration above are equally likely. What is the probability

that X = 0? What is the probability that X = 1? What is the probability

that X = 2? The third axiom of probability gives us an interesting identity,

210 = .

Random variable. Suppose that the sample space S has an accompanying

sigma field B. Let the set of real numbers R also be endowed with a sigma

field B1, specifically the smallest sigma field containing all open subintervals

of R. A function X : S → R is called a random variable if, for every B ∈ B1,

we have {ω : X(ω) ∈ B} ∈ B. Here we are using ω to represent a generic

element of S.
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Example (random variable). In the motivating illustration above we

have X(A,A,A,A,A,A,B,B,B,B) = . Since {ω : X(ω) ∈ B} ⊂ S

for any B ∈ B1, we are assured that X is a random variable if we take B to

consist of all subsets of S.

If for some reason we had chosen B to consist only of S and ∅, then X

would not be a random variable since, for example, {ω : X(ω) ∈ (9.5, 10.5)} =

{A,A,A,A,A,A,A,A,A,A} /∈ B. Of course, such a choice of B is contrived

and unnatural. In STA 623 we will not get into any trouble if we just regard

a random variable as a function that maps elements of S to elements of R.

Probabilities involving random variables. Let X be a random variable. For

any B ∈ B1, we formally define P (X ∈ B) as P ({ω : X(ω) ∈ B}). For

B,B1, B2, . . . ∈ B1, we have the following properties:

1. P (X ∈ B) ≥ 0.

2. P (X ∈ R) = 1.

3. P (X ∈ ∪∞
i=1

Bi) =
∑∞

i=1
P (X ∈ Bi) when Bi ∩ Bj = ∅ for i 6= j.

Example (probabilities involving random variables). Let us verify

property 3 above. We have

P (X ∈ ∪∞
i=1

Bi) = P ({ω : X(ω) ∈ ∪∞
i=1

Bi})

= P (∪∞
i=1

{ω : X(ω) ∈ Bi})

=
∞∑

i=1

P ({ω : X(ω) ∈ Bi}) =
∞∑

i=1

P (X ∈ Bi).

To understand the second equality, let A := {ω : X(ω) ∈ ∪∞
i=1

Bi}

and Ai := {ω : X(ω) ∈ Bi}. The second equality is just saying that
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P (A) = P (∪∞
i=1

Ai), which follows from the identity A = ∪∞
i=1

Ai.

(If ω ∈ A, then X(ω) ∈ ∪∞
i=1

Bi. So there must exist i ∈ {1, 2, . . .} such

that X(ω) ∈ Bi, which implies that ω ∈ Ai and hence ω ∈ ∪∞
i=1

Ai. This

shows that A ⊂ ∪∞
i=1

Ai. On the other hand, if ω ∈ ∪∞
i=1

Ai, then ω ∈ Ai for

some i ∈ {1, 2, . . .}. So we have X(ω) ∈ Bi and hence X(ω) ∈ ∪∞
i=1

Bi. This

means that ω ∈ A, so we have also shown that ∪∞
i=1

Ai ⊂ A.)

The third equality is just saying that P (∪∞
i=1

Ai) =
∑∞

i=1
P (Ai). This is

true because Ai ∩ Aj = ∅ for i 6= j.

(If ω ∈ Ai∩Aj, then X(ω) ∈ Bi∩Bj = ∅, which contradicts the definition

of a random variable since X(ω) should be a real number.)

Practical considerations. Suppose that we take systolic blood pressure mea-

surements on 10 subjects and let X denote the average of the 10 measure-

ments. We may wish to answer questions like, what is P (140 ≤ X ≤ 150)?

We can explicitly define S to be a subset of R10 — are there any obvious

restrictions on S? — and put X(ω) :=
∑

10

i=1
ωi/10, where ω is a vector

whose first component ω1 contains the measurement for the first subject,

whose second component ω2 contains the measurement for the second sub-

ject, and so forth.

Yet, the three properties above tell us, in effect, that we can perform

computations involving random variables without explicitly defining S or a

probability structure on its accompanying sigma field.

Example (practical considerations). Suppose that P (X ≥ 140) = 0.40

and P (X > 150) = 0.20. What is P (140 ≤ X ≤ 150)?

Suppose that P (X < x) = P (X ≤ x) = 1− exp[−x] for any x ∈ [0,∞).

Here we are using (capital) X to denote a random variable and (lower case)

x to denote a possible observed value of X. What is P (X > 1)? What is

P (|X − 2| > 1)?
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