STA 623 - Fall 2013 - Dr. Charnigo

Section 1.6: Density and Mass Functions

Probability mass function. Let X be a discrete random variable. We define the probability mass function of X as $f(x):=P(X=x)$ for any $x \in \mathbb{R}$. Note that (lower case) x is a placeholder for 2 or 8 or some other number, so that (for example) $f(2)=P(X=2)$ and $f(8)=P(X=8)$.

A probability mass function must satisfy $f(x) \geq 0$ for all $x \in \mathbb{R}$ and $\sum_{x \in \mathbb{R}: f(x)>0} f(x)=1$. Conversely, any function $f(x)$ with these properties may be interpreted as a probability mass function.

For a discrete random variable X with probability mass function $f(x)$ and cumulative distribution function $F(x)$, we have $P(X \in B)=\sum_{x \in B: f(x)>0} f(x)$ for any set $B \in \mathcal{B}^{1}$, the sigma field on \mathbb{R} generated by its open subintervals. In particular,

$$
\begin{aligned}
& P(a \leq X \leq b)= \\
\geq & P(a<X \leq b)=\sum_{x \in[a, b]: f(x)>0} f(x) \\
\geq & P(a<X<b)=\sum_{x \in(a, b]: f(x)>0} f(x)=F(b)-F(a)>0
\end{aligned}
$$

for any $a, b \in \mathbb{R}$ with $a<b$. The first " \geq " above is " $>$ " if $f(a)>0$ and " $=$ " otherwise. The second " \geq " above is " $>$ " if $f(b)>0$ and " $=$ " otherwise.

Example (probability mass function). Let λ be a positive number and put $f(x):=1_{\{x \in\{0,1,2, \ldots\}\}} C(\lambda) \lambda^{x} / x$!. How can $C(\lambda)$ be chosen so that $f(x)$ is a probability mass function?

Let X be a random variable with this probability mass function, which we may write in shorthand as $X \sim f(x)$. What is $P(X>1)$? What is $P(X$ even $)$?

Probability density function. Let X be a continuous random variable with cumulative distribution function $F(x)$. Suppose that there exists a function $f(x)$ such that $F(x)=\int_{-\infty}^{x} f(t) d t$. Then we refer to $f(x)$ as a probability density function of X. Since altering $f(x)$ at finitely many points has no impact on its integration, a probability density function is not unique.

A probability density function must satisfy $\int_{-\infty}^{\infty} f(t) d t=1$ and cannot be negative over any interval of nonzero length. We may as well assume, as is routinely done, that $f(x) \geq 0$ for all $x \in \mathbb{R}$. Conversely, any function $f(x)$ with these properties may be interpreted as a probability density function.

If $f(x)$ is continuous, then $f(x)=\frac{d}{d x} F(x)$.
For a continuous random variable X with probability density function $f(x)$ and cumulative distribution function $F(x)$, we have

$$
P(a<X<b)=\int_{a}^{b} f(x) d x
$$

for any $a, b \in \mathbb{R}$ with $a<b$. The above equality also holds with $a=-\infty$ and/or $b=\infty$. For finite a and b, we have the additional equalities

$$
P(a<X<b)=P(a \leq X<b)=P(a<X \leq b)=P(a \leq X \leq b)=F(b)-F(a)
$$

Example (probability density function). Let λ be a positive number and put $f(x):=1_{\{x>0\}} C(\lambda) \exp [-\lambda x]$. How can $C(\lambda)$ be chosen so that $f(x)$ is a probability density function?

Let X be a random variable with this probability density function, which we may write in shorthand as $X \sim f(x)$. What is $P(X>1)$? What is $F(x)$? Note that $f(x)$ is discontinuous only at 0 and that $f(x)=\frac{d}{d x} F(x)$ for all $x \neq 0$.

Additional practice. Let X be a random variable with probability density function $f(x):=1_{\{x>0\}}(\log 2) \exp [-(\log 2) x]$. Show that, for any positive reals a, b, we have

$$
P(X \geq a+b \mid X \geq a)=P(X \geq b \mid X \geq 0)
$$

If X is used to model the lifetime of a light bulb in months, then the preceding equality says that a light bulb that has been in use for a months is just as likely to last another b months as is a fresh light bulb.

Let $Y:=\lceil X\rceil$, read "the ceiling of X ", which means the least integer greater than or equal to X. What is the probability mass function of Y ? Show that, for any positive integers a, b, we have

$$
P(Y>a+b \mid Y>a)=P(Y>b \mid Y>0) .
$$

If Y is used to model the number of coin flips required to obtain one's first "Heads", then the preceding equality says that a person who has already started flipping a coin and obtained "Tails" on each of the first a attempts is just as likely to get all "Tails" in the next b attempts as is another person who has just started flipping a coin.

