
STA 623 – Fall 2013 – Dr. Charnigo

Section 2.1: Distributions of functions of a random variable

Probabilities for functions of a random variable. Let X be a random vari-

able. Put Y := g(X) for some function g such that, for any set B ∈ B1,

we have g−1(B) := {x ∈ R : g(x) ∈ B} ∈ B1. (This condition is sat-

isfied for all g of practical interest.) Then, for any B ∈ B1, we define

P (Y ∈ B) := P (X ∈ g−1(B)).

Example (probabilities for functions of a random variable). Suppose

that X has probability density function exp[−2|x|]. Put Y := g(X) := X2

and B := [0, y] for a generic nonnegative real y. Then g−1(B) =

and P (Y ≤ y) =

Discrete and continuous cases. If X is a discrete random variable, then so

is Y . In this case, taking B := {y} for a generic y ∈ R shows that

P (Y = y) =
∑

x∈g−1({y}):P (X=x)>0

P (X = x).

If X is a continuous random variable, the same may or may not be true

of Y . For instance, let X have probability density function 1{x>0} exp[−x].

Then Y := X2 is a continuous random variable, Y := ⌊X⌋ is a discrete

random variable (here ⌊X⌋, read “the floor of X”, is the largest integer less

than or equal to X), and Y := min{X, 2} is neither a discrete random vari-

able nor a continuous random variable.
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Example (discrete and continuous cases). LetX have probability mass

function (1/2)x for x ∈ {1, 2, . . .}. Let Y := ⌊X⌋ mod 2, so that Y = 1 when

⌊X⌋ is odd and Y = 0 otherwise. We have P (Y = 0) =

Monotonicity of the transforming function. Let fX(x) denote the probability

mass (if X is a discrete random variable) or density (if X is a continuous

random variable) function of X. Let X := {x ∈ R : fX(x) > 0}, which we

refer to as the support of X, and let Y := {y ∈ R : y = g(x) for some x ∈

X}.

First suppose that g(x) is strictly increasing, in that u > v implies g(u) >

g(v). Then, for any y ∈ Y there exists a unique x ∈ X such that g(x) = y.

We refer to this x as g−1(y). Since g(X) ≤ y is equivalent to X ≤ g−1(y),

we have

FY (y) = FX(g
−1(y)),

where FY and FX denote the cumulative distribution functions of Y and

X respectively. In addition, if X is a continuous random variable, fX(x) is

continuous on X , and g−1(y) has a continuous derivative on Y , then Y is a

continuous random variable with probability density function

fY (y) = fX(g
−1(y))

d

dy
g−1(y)1{y∈Y}.

Next suppose that g(x) is strictly decreasing, in that u > v implies

g(u) < g(v). Again, for any y ∈ Y there exists a unique x ∈ X such

that g(x) = y. We refer to this x as g−1(y). Since g(X) ≤ y is equivalent to

X ≥ g−1(y), we have

FY (y) = 1− FX(g
−1(y)) + P (X = g−1(y)).

(Where does the last term above come from?) In addition, if X is a continu-

ous random variable, fX(x) is continuous on X , and g−1(y) has a continuous
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derivative on Y , then Y is a continuous random variable with probability

density function

fY (y) = −fX(g
−1(y))

d

dy
g−1(y)1{y∈Y}.

There is also a formula in your textbook for fY (y) when, among other

conditions, X can be partitioned into finitely many intervals on each of

which g(x) is monotone (i.e., either strictly increasing or strictly decreas-

ing). Personally I think that deriving FY (y) from first principles and then

differentiating in y is easier than trying to remember the textbook formula.

Example (monotonicity of the transforming function). Suppose that

X has probability density function exp[−x]1{x>0} with corresponding cumu-

lative distribution function (1 − exp[−x])1{x>0}. Put g(x) := 1 − exp[−x],

which is strictly increasing and which maps X = (0,∞) to Y = (0, 1). We

have g−1(y) = − log(1 − y), from which we find that a probability density

function for Y is In

fact, this illustrates a general result called the probability integral transfor-

mation: whenever g(x) = FX(x) for a continuous random variable X, we

obtain this probability density function for Y . (The general result is more

challenging to verify because there exist continuous random variables whose

cumulative distribution functions are not strictly increasing.)

Suppose that X has probability density function exp[−2|x|]. Put g(x) :=

x2, which is clearly not monotone. However, since we found P (Y ≤ y) ear-

lier, we can differentiate in y to obtain

an expression that is valid for all y ∈ (0,∞). We can define fY (y) to be zero

for all y ∈ (−∞, 0], and then fY (y) will be a probability density function

for Y .
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