STA 623 — Fall 2013 — Dr. Charnigo

Section 2.1: Distributions of functions of a random variable

Probabilities for functions of a random wvariable. Let X be a random vari-
able. Put Y := g(X) for some function ¢ such that, for any set B € B,
we have ¢g!(B) := {z € R : g(x) € B} € B'. (This condition is sat-
isfied for all g of practical interest.) Then, for any B € B!, we define
P(Y € B) := P(X € g }(B)).

Example (probabilities for functions of a random variable). Suppose
that X has probability density function exp[—2|z|]. Put Y := ¢g(X) := X?
and B := [0, y] for a generic nonnegative real y. Then g~ (B) =

and P(Y < y) =

Discrete and continuous cases. If X is a discrete random variable, then so
is Y. In this case, taking B := {y} for a generic y € R shows that

P(Y =y) = > P(X =ux).

zeg~ ({y}):P(X=2)>0

If X is a continuous random variable, the same may or may not be true
of Y. For instance, let X have probability density function 1,-0y exp[—z].
Then Y := X? is a continuous random variable, Y := | X| is a discrete
random variable (here | X |, read “the floor of X7 is the largest integer less
than or equal to X), and Y := min{ X, 2} is neither a discrete random vari-
able nor a continuous random variable.



Example (discrete and continuous cases). Let X have probability mass
function (1/2)* forz € {1,2,...}. Let Y := | X| mod 2, so that Y = 1 when
| X | isodd and Y = 0 otherwise. We have P(Y = 0) =

Monotonicity of the transforming function. Let fx(z) denote the probability
mass (if X is a discrete random variable) or density (if X is a continuous
random variable) function of X. Let X := {x € R : fx(x) > 0}, which we
refer to as the support of X, and let ) := {y € R : y = g(x) for some x €
X}

First suppose that g(x) is strictly increasing, in that u > v implies g(u) >
g(v). Then, for any y € ) there exists a unique z € X such that g(z) = y.
We refer to this z as g (y). Since g(X) < y is equivalent to X < g 1(y),

we have
Fy(y) = Fx(97'(v)),

where Fy and F'x denote the cumulative distribution functions of Y and
X respectively. In addition, if X is a continuous random variable, fx(z) is
continuous on X, and g~'(y) has a continuous derivative on Y, then Y is a
continuous random variable with probability density function

Frly) = fX<g—1<y>>dilyg—1<y>1{yey}-

Next suppose that g(z) is strictly decreasing, in that w > v implies
g(u) < g(v). Again, for any y € ) there exists a unique x € X such
that g(x) = y. We refer to this z as g~ !(y). Since g(X) < y is equivalent to
X > g7 '(y), we have

Fy(y) =1—Fx(g '(y)) + P(X =g (y)).

(Where does the last term above come from?) In addition, if X is a continu-
ous random variable, fx(x) is continuous on X', and g~ (y) has a continuous
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derivative on ), then Y is a continuous random variable with probability
density function

frly) = —fX<g—1<y>>dilyg—1<y>1{yey}-

There is also a formula in your textbook for fy(y) when, among other
conditions, X can be partitioned into finitely many intervals on each of
which g(z) is monotone (i.e., either strictly increasing or strictly decreas-
ing). Personally I think that deriving Fy (y) from first principles and then
differentiating in y is easier than trying to remember the textbook formula.

Example (monotonicity of the transforming function). Suppose that
X has probability density function exp[—x]1,~¢y with corresponding cumu-
lative distribution function (1 — exp[—x])1(;~0y. Put g(z) := 1 — exp[—2z],
which is strictly increasing and which maps X = (0,00) to ) = (0,1). We
have g~ 1(y) = —log(1 — y), from which we find that a probability density
function for Y is In
fact, this illustrates a general result called the probability integral transfor-
mation: whenever g(z) = Fx(z) for a continuous random variable X, we
obtain this probability density function for Y. (The general result is more
challenging to verify because there exist continuous random variables whose
cumulative distribution functions are not strictly increasing.)

Suppose that X has probability density function exp|—2|z|]. Put g(z) :=
2%, which is clearly not monotone. However, since we found P(Y < y) ear-
lier, we can differentiate in y to obtain
an expression that is valid for all y € (0, 00). We can define fy(y) to be zero
for all y € (—o0,0], and then fy(y) will be a probability density function
for Y.



