
STA 623 – Fall 2013 – Dr. Charnigo

Section 2.2: Expected values

Expected value of a discrete random variable. Let X be a discrete random

variable with probability mass function fX(x) and support X . Let g(x) be

a function such that g−1(B) ∈ B1 for any B ∈ B1. We define the expected

value of g(X), also referred to as the mean of g(X), as

E[g(X)] :=
∑

x∈X
g(x)fX(x) =

∑

x∈X
g(x)P (X = x),

provided that the sum is absolutely convergent. If the sum is not absolutely

convergent, then we say that E[g(X)] does not exist as a finite number. If

the sum is not absolutely convergent and g(x) ≥ 0 for all but finitely many

x ∈ X , then we may also say that E[g(X)] = ∞. Note that the expected

value of g(X), when it does exist as a finite number, is just a weighted aver-

age of all values of g(X) that occur with nonzero probabilities, the weights

being the probabilities themselves.

Example (expected value of a discrete random variable). Let X be

the number of flips required to get your first tails on a fair coin. Then X

has probability mass function fX(x) := (1/2)x for x ∈ {1, 2, . . .}. Putting

g(x) := x, we have

E[X] =
∞
∑

x=1

x(1/2)x =
∞
∑

x=1

(1/2)x +
∞
∑

x=2

(1/2)x +
∞
∑

x=3

(1/2)x + · · ·

=

This computation suggests an answer if you were asked, before you flipped

the coin, what you expected X to be. However, despite what we saw in this

example, we are not generally guaranteed that E[X] ∈ X , even when E[X]

exists as a finite number. (Can you construct another example in which

E[X] exists as a finite number but does not belong to X ?)
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Again, let X be the number of flips required to get your first tails on a

fair coin. Putting g(x) := 2x − C for some positive constant C, we have

E[g(X)] =

∞
∑

x=1

{(2x − C)(1/2)x} =

∞
∑

x=1

{1− C(1/2)x} = ∞.

To see the last equality above, let x∗ be the smallest positive integer greater

than − logC/ log(1/2)+1. Then, for every positive integer x ≥ x∗, we have

C(1/2)x < (1/2). Hence,

∞
∑

x=x∗

{1− C(1/2)x} = lim
n→∞

n
∑

x=x∗

{1− C(1/2)x} ≥ lim
n→∞

n
∑

x=x∗

(1/2)

= lim
n→∞

(n− x∗ + 1)(1/2) = ∞.

Since
∑x∗−1

x=1
{1− C(1/2)x} is finite, we also have

∑∞
x=1

{1−C(1/2)x} = ∞.

Here is an interpretation. I sell you a fair coin for C dollars and promise to

pay you 2X dollars if you get your first tails on flip X. Your net winnings are

g(X). If C < 2, then your net winnings are positive with probability 1 and

you will surely choose to play (assuming you are a rational human being).

However, the calculations above show that your expected net winnings are

positive infinity regardless of the price C.

So, I have a quarter in my briefcase. Does anyone want to buy it for

C = 1, 000, 000, 000 dollars? This is called the St. Petersburg Paradox

and nicely demonstrates that, in real life situations that can be modeled

probabilistically, our behaviors are not necessarily governed by expected

values. (If they were, then nobody would play the lottery.)

Let us do one last example. Say that X has probability mass function

fX(x) := exp[−λ]λx/x! for x ∈ {0, 1, 2, . . .}, where λ is a positive real.

Putting g(x) := x, we have

E[X] =

∞
∑

x=0

x exp[−λ]λx/x! =

∞
∑

x=1

x exp[−λ]λx/x! = λ

∞
∑

x=1

exp[−λ]λx−1/(x−1)!

=
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Expected value of a continuous random variable. Let X be a continuous

random variable with probability density function fX(x) and support X .

Let g(x) be a function such that g−1(B) ∈ B1 for any B ∈ B1. We define

the expected value of g(X), also referred to as the mean of g(X), as

E[g(X)] :=

∫

X
g(x)fX(x) dx,

provided that the integral is absolutely convergent. If the integral is not

absolutely convergent, then we say that E[g(X)] does not exist as a finite

number. If the integral is not absolutely convergent and g(x) ≥ 0 for all

x ∈ X , then we may also say that E[g(X)] = ∞.

Example (expected value of a continuous random variable). Let

α be a positive real. The gamma function is Γ[α] :=
∫∞
0

xα−1 exp[−x] dx.

Since n! = Γ[n+ 1] for any positive integer n and Γ[α+ 1] = αΓ[α] for any

positive real α, the gamma function may be viewed as an extension of the

factorial function from the positive integers to the positive reals.

Let X have probability density function

fX(x) :=
λα

Γ[α]
xα−1 exp[−λx]1{x>0}

for some positive reals α and λ. Putting g(x) := xβ for x ∈ X (and defining

g(x) to be, say, 0 for x ∈ X c), where β is a positive real, we have

E[Xβ] =

∫ ∞

0

λα

Γ[α]
xα+β−1 exp[−λx] dx

=

Some special cases:

• If α = 1, then E[Xβ] =

• If β ∈ {1, 2, . . .}, then E[Xβ] =
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Suppose that X = [0,∞), so that X is a nonnegative random variable.

Suppose also that X has probability density function fX(x), continuous on

X , and cumulative distribution function FX(x). Then integrating by parts

with u := x, dv := fX(x) dx, v := −[1− FX(x)], and du := dx yields

E[X] =

∫ ∞

0

xfX(x) dx = lim
M→∞

∫ M

0

xfX(x) dx

= lim
M→∞

{

−M [1− FX(M)] +

∫ M

0

[1− FX(x)] dx

}

.

If limM→∞M [1− FX(M)] = 0, then we obtain

E[X] = lim
M→∞

∫ M

0

[1− FX(x)] dx =

∫ ∞

0

[1− FX(x)] dx.

To illustrate, let X have cumulative distribution function FX(x) := 1 −
exp[−x2] for x ≥ 0. Then F ′

X(x) = 2x exp[−x2] for x > 0 and we can put

fX(x) := 2x exp[−x2] for x ≥ 0. Since

lim
M→∞

M [1− FX(M)] = lim
M→∞

M exp[−M2] = 0,

we can calculate E[X] by evaluating
∫ ∞

0

[1− FX(x)] dx =

∫ ∞

0

exp[−x2] dx = (1/2)

∫ ∞

−∞
exp[−x2] dx =: I.

Squaring this quantity and switching to polar coordinates, we have

I2 = (1/4)

∫ ∞

−∞

∫ ∞

−∞
exp[−(x2+y2)] dx dy = (1/4)

∫ ∞

0

∫

2π

0

exp[−r2] r dr dθ

= (1/4)

∫ ∞

0

2π exp[−r2] r dr =

from which we conclude that I = E[X] =
√
π/2.

Of course, another option would be to evaluate

E[X] =

∫ ∞

0

xfX(x) dx =

∫ ∞

0

2x2 exp[−x2] dx.
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Substituting u := x2 and du := 2x dx, we would obtain

E[X] =

∫ ∞

0

u1/2 exp[−u] du = Γ[3/2].

If you knew that Γ[1/2] =
√
π, you could conclude that E[X] =

√
π/2.

Let us do one last example. Say that X has probability density function

fX(x) := (α − 1)x−α1{x≥1} for some α > 1. Let β be a positive real, and

take g(x) := xβ for x ∈ [1,∞). We have

E[Xβ] =

∫ ∞

1

(α− 1)xβ−α dx = lim
M→∞

∫ M

1

(α− 1)xβ−α dx.

If β = α− 1, then we have

E[Xβ] =

If β > α− 1, then we have

E[Xβ] = lim
M→∞

(α− 1)

(β − α + 1)
(Mβ−α+1 − 1) = ∞.

If β < α− 1, then we have

E[Xβ] = lim
M→∞

(α− 1)

(β − α + 1)
(Mβ−α+1 − 1) =

(1− α)

(β − α + 1)
.

Linearity and monotonicity of expectation. We have

E[c1g1(X) + c2g2(X)] = c1E[g1(X)] + c2E[g2(X)]

whenever all of the expectations exist as finite numbers, due to the linearity

of summation (for discreteX) and integration (for continuousX). Moreover,

if the last two expectations exist as finite numbers, then so does the first.

If g1(x) ≤ g2(x) ≤ g3(x) for all x ∈ X , then we have

E[g1(X)] ≤ E[g2(X)] ≤ E[g3(X)].

In particular, if E[g1(X)] and E[g3(X)] exist as finite numbers, then so does

E[g2(X)].
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Example (linearity and monotonicity of expectation). Here is a

problem from the 2009 comprehensive examination. Suppose that X is a

nonnegative random variable for which E[X2009] exists as a finite number.

Prove that E[Xc] exists as a finite number for any c ∈ (0, 2009).

Our strategy will be to set g2(x) := xc and then exhibit g1(x) and g3(x)

with g1(x) ≤ g2(x) ≤ g3(x) such that E[g1(X)] and E[g3(X)] exist as fi-

nite numbers. An obvious choice for g1(x) is yielding

E[g1(X)] = We would like to choose g3(x) := x2009, but

unfortunately x2009 < xc when x ∈ (0, 1). However, xc ≤ 1 when x ∈ (0, 1),

which gives us the idea to take g3(x) := 1+x2009. Then by linearity we have

E[g3(X)] = E[1] + E[X2009] = 1 + E[X2009], which is finite since E[X2009]

was finite. Therefore, we conclude that E[g2(X)] = E[Xc] is finite.

Minimizing distance. Suppose that E[X2] exists as a finite number. Then

we can show that E[X] also exists as a finite number (by mimicking the

argument above with 2 in place of 2009), so E[(X − b)2] exists as a finite

number and is equal to E[X2]− 2E[X]b+ b2 for any real b.

The authors of your textbook pose the following question: For what

choice of b is E[(X − b)2], the average squared distance of X from b, mini-

mized?

The authors of your textbook prove that the answer is b := E[X] with-

out using calculus, by writing (X − b)2 as ({X −E[X]}+ {E[X]− b})2 and
expanding the square. Below is a second proof that does use calculus.

Put h(b) := E[X2] − 2E[X]b + b2. Then h′(b) = −2E[X] + 2b, which is

negative for b ∈ (−∞, E[X]) and positive for b ∈ (E[X],∞), showing that

h(b) is decreasing for b ∈ (−∞, E[X]) and increasing for b ∈ (E[X],∞).

This implies that h(b) is minimized at b := E[X].
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