
STA 623 – Fall 2013 – Dr. Charnigo

Section 2.3: Moments and moment generating functions

Moments. Let X be a random variable. For any integer n ≥ 1, we define

the nth moment of X to be E[Xn]. For any integer n ≥ 2, we define the nth

central moment of X to be E[(X − ν)n], where ν := E[X] is assumed to

exist as a finite number. If the nth moment exists as a finite number, then

so do all moments of lower order. Hence, if the nth moment exists as a finite

number, then so does the nth central moment.

Example (moments). Suppose X has probability density function

fX(x) := (2π)−1/2σ−1 exp[−(x− µ)2/(2σ2)],

where µ ∈ (−∞,∞) and σ ∈ (0,∞). Let g(x) := (x − µ)/σ and put

Z := g(X). Then for any real z we have

P (Z ≤ z) = P (X ≤ σz + µ) =

∫ σz+µ

−∞

(2π)−1/2σ−1 exp[−(x− µ)2/(2σ2)] dx.

Making the substitutions y := (x − µ)/σ and dy := dx/σ, we can express

the integral as
∫ z

−∞

(2π)−1/2 exp[−y2/2] dy.

Upon differentiating with respect to z, we obtain a probability density func-

tion for Z of

fZ(z) := (2π)−1/2 exp[−z2/2].

We have

E[Z2] = (2π)−1/2

∫

R

z2 exp[−z2/2] dz = (2π)−1/2

∫

R

z exp[−z2/2]z dz.

Integrating by parts with u := z, du := dz, dv := exp[−z2/2]z dz, and

v := − exp[−z2/2], we obtain

E[Z2] =

1



Likewise, for any positive integer p, we have

E[Z2p] = (2π)−1/2

∫

R

z2p exp[−z2/2] dz = (2π)−1/2

∫

R

z2p−1 exp[−z2/2]z dz.

Integrating by parts with u := z2p−1, du := (2p−1)z2p−2 dz, dv := exp[−z2/2]z dz,

and v := − exp[−z2/2], we obtain

E[Z2p] = (2π)−1/2(2p− 1)

∫

R

z2p−2 exp[−z2/2] dz = (2p− 1)E[Z2p−2].

Thus, by mathematical induction,

E[Z2p] = (2p− 1)× (2p− 3)× · · · × 3× 1,

which some mathematicians denote (2p− 1)!!, read “double factorial”.

Note that E[Z2p−1] must exist as a finite number (because E[Z2p] does)

and must equal zero (because E[Z2p−1] is the integral of an odd function

over R).

Now we are in a good position to find some moments of X = σZ + µ.

We have

E[X] =

E[X2] =

E[(X − ν)2] =

E[X3] = E[(σZ+µ)3] = σ3E[Z3]+3σ2µE[Z2]+3σµ2E[Z]+µ3 = 3σ2µ+µ3,

and

E[X4] = E[(σZ + µ)4] = σ4E[Z4] + 6σ2µ2E[Z2] + µ4 = 3σ4 + 6σ2µ2 + µ4.

We conclude this set of examples with a cautionary note. Suppose W

has probability density function fW (w) := π−1/(1 + w2). Then

E[W 2] = π−1

∫

R

w2/(1+w2) dw ≥ π−1

∫ ∞

1

w2/(1+w2) dw ≥ π−1

∫ ∞

1

1/2 dw = ∞.
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On the other hand,

E[W 3] = π−1

∫

R

w3/(1 + w2) dw

appears to be 0 because the integrand is an odd function. If that is true,

then we are in trouble because we have said that the existence of E[W 3] as

a finite number should imply the same for E[W 2]. How can this apparent

contradiction be resolved?

Variance and standard deviation. The second central moment E[(X − ν)2]

is called the variance of X. The variance describes how much X fluctuates

around its expected value. The standard deviation of X is defined to be

the positive square root of the variance. Unlike the variance, the standard

deviation is expressed in the same units as X. For instance, if X represents

systolic blood pressure in mmHg, then the standard deviation of X is ex-

pressed in mmHg while the variance is expressed in (mmHg)2.

Three useful results, assuming all expectations and variances referred to

exist as finite numbers, are as follows.

1. For any constants a and b, V ar[aX + b] = a2V ar[X].

2. A computational formula for the variance is E[X2]− (E[X])2.

3. If V ar[X] = 0, then P (X = E[X]) = P (|X − E[X]| = 0) = 1.

A useful result on expectation of indicators, for our next example. For any

random variable X and any set A ∈ B1 we have E[1{X∈A}] = P (X ∈ A).

To see this, suppose for concreteness that X is continuous with probability

density function fX(x). Then we have

E[1{X∈A}] =

∫

R

1{x∈A}fX(x) dx =

∫

A

fX(x) dx = P (X ∈ A).
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Example (variance and standard deviation). Your textbook authors

prove the first two useful results above by appealing to linearity of expec-

tation. We can prove the third by contradiction. Indeed, suppose that

E[(X − E[X])2] = 0 but that P (|X − E[X]| > 0) = ǫ > 0. Since

{|X − E[X]| > 0} = ∪∞
j=1{1/j ≤ |X − E[X]| < 1/(j − 1)}

we have

0 < ǫ =
∞
∑

j=1

P (1/j ≤ |X − E[X]| < 1/(j − 1)).

By countable additivity, there must exist j ∈ {1, 2, . . .} such that

0 < δ = P (1/j ≤ |X − E[X]| < 1/(j − 1)) ≤ P (1/j ≤ |X − E[X]|).

Then, using monotonicity of expectation (twice) and the useful result on

expectation of indicators, we have

E[(X − E[X])2] ≥ E[(X − E[X])21{|X−E[X ]|≥1/j}]

≥ E[(1/j)21{|X−E[X ]|≥1/j}]

≥ (1/j)2P (|X − E[X]| ≥ 1/j)

≥

> 0.

We have arrived at a contradiction. Therefore, we must conclude that

E[(X − E[X])2] = 0 implies P (|X − E[X]| > 0) = 0.

Moment generating function. The moment generating function of X is de-

fined as MX(t) := E[exp(tX)]. The moment generating function is poten-

tially useful for three reasons.

1. Suppose there exists h > 0 such that MX(t) < ∞ for all t ∈ [−h, h].

Then, for every positive integer n, E[Xn] exists as a finite number and is

equal to dn

dtnMX(t)|t=0.
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2. Suppose there exists h > 0 such that MX(t),MY (t) < ∞ for all

t ∈ [−h, h]. If MX(t) = MY (t) for all t ∈ [−h, h], then X and Y have the

same cumulative distribution function: FX(u) = FY (u) for any real u.

3. Suppose there exists h > 0 such that MX(t),MX1
(t),MX2

(t), . . . < ∞

for all t ∈ [−h, h]. If MXi
(t)

i→∞
→ MX(t) for all t ∈ [−h, h], then the

cumulative distribution functions of X1, X2, . . . converge to the cumula-

tive distribution function of X at all points where the latter is continuous:

FXi
(u)

i→∞
→ FX(u) for any real u at which FX(u) is continuous.

Example (moment generating function). To see why the first result

above holds, suppose for concreteness that X is continuous with probability

density function fX(x). For t ∈ (−h, h) we have

dn

dtn
MX(t) =

dn

dtn

∫

R

exp[tx]fX(x) dx

=

∫

R

∂n

∂tn
exp[tx]fX(x) dx

=

∫

R

xn exp[tx]fX(x) dx.

(The second equality above, interchange of differentiation and integration,

will be justified next week.) Hence,

dn

dtn
MX(t)|t=0 =

∫

R

xnfX(x) dx = E[Xn].

Suppose X has probability density function

fX(x) := (2π)−1/2σ−1 exp[−(x− µ)2/(2σ2)],

where µ ∈ (−∞,∞) and σ ∈ (0,∞). Put Z := (X − µ)/σ. Then Z has

probability density function

fZ(z) := (2π)−1/2 exp[−z2/2],
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from which we can calculate the moment generating function of Z:

MZ(t) = (2π)−1/2

∫

R

exp[tz] exp[−z2/2] dz

= (2π)−1/2

∫

R

exp[(−z2 + 2tz)/2] dz

= (2π)−1/2

∫

R

exp[(−z2 + 2tz − t2)/2] exp[t2/2] dz

= (2π)−1/2 exp[t2/2]

∫

R

exp[−(z − t)2/2] dz

=

We can then calculate the moment generating function of X = σZ + µ:

MX(t) = E[exp(tX)] = E[exp(tσZ + tµ)] = exp(tµ)E[exp(tσZ)]

= exp(tµ)MZ(tσ) =

To see an application of the third result above, supposeXi has probability

density function
1

Γ[αi]β
αi

i

xαi−1 exp[−x/βi]1{x>0}

for i ∈ {1, 2, . . .}, where αi := i and βi := 1/i. One can show that

MXi
(t) =

[

1

1− βit

]αi

=

[

1

1− t/i

]i

for t ∈ (−i, i). Taking this for granted, we have

MXi
(t) =

[

1 +
t/i

1− t/i

]i
i→∞
→ exp[t].

On the other hand, exp[t] is clearly MX(t), where X is a random variable

that equals 1 with probability 1. As such, we conclude that for any u 6= 1

P (Xi ≤ u)
i→∞
→ P (X ≤ u).

In particular,

P (Xi ≤ u)
i→∞
→ 0 for u < 1 and

P (Xi ≤ u)
i→∞
→ 1 for u > 1.

6


