## STA 623 - Fall 2013 - Dr. Charnigo

## Section 2.4: Differentiating under an integral sign

The main result. Suppose there exist $\delta>0$ and $A \in \mathcal{B}^{1}$ such that the following conditions are met for $t \in(y-\delta, y+\delta)$.

1. The integral $\int_{A} g(x, t) d x=: u(t)$ is absolutely convergent.
2. For any fixed $x \in A, \frac{\partial}{\partial t} g(x, t)$ exists and is a continuous function of $t$.
3. There exists $h(x) \geq 0$ such that $\left|\frac{\partial}{\partial t} g(x, t)\right| \leq h(x)$ and $\int_{A} h(x) d x<\infty$.

Then $\left.\frac{d}{d t} u(t)\right|_{t=y}$ exists and equals $\left.\int_{A} \frac{\partial}{\partial t} g(x, t)\right|_{t=y} d x$.

Application to moment generating function. Let $X$ be a continuous random variable with probability density function $f_{X}(x)$ supported on $\mathcal{X} \subset \mathbb{R}$. Assume there exists $\epsilon>0$ such that

$$
M_{X}(t):=E[\exp (t X)]=\int_{\mathcal{X}} \exp (t x) f_{X}(x) d x<\infty
$$

for all $t \in[-\epsilon, \epsilon]$. We wish to show that

$$
\left.\frac{d}{d t} M_{X}(t)\right|_{t=0}=\left.\int_{\mathcal{X}} \frac{\partial}{\partial t} \exp (t x)\right|_{t=0} f_{X}(x) d x=E[X]
$$

Put $\delta:=\epsilon / 2, A:=\mathcal{X}, y:=0$, and $g(x, t):=\exp (t x) f_{X}(x)$.

1. Since $(-\epsilon / 2, \epsilon / 2) \subset[-\epsilon, \epsilon]$ we have

$$
\int_{A} g(x, t) d x=\int_{\mathcal{X}} \exp (t x) f_{X}(x) d x<\infty
$$

for $t \in(y-\delta, y+\delta)=(-\epsilon / 2, \epsilon / 2)$, by assumption.
2. For any fixed $x \in A=\mathcal{X}$ we have

$$
\frac{\partial}{\partial t} g(x, t)=\frac{\partial}{\partial t} \exp (t x) f_{X}(x)=x \exp (t x) f_{X}(x)
$$

which is obviously continuous in $t$.
3. For $t \in(y-\delta, y+\delta)=(-\epsilon / 2, \epsilon / 2)$, we have

$$
|x \exp (t x)| \leq x \exp (\epsilon x / 2) 1_{\{x \geq 0\}}-x \exp (-\epsilon x / 2) 1_{\{x<0\}} .
$$

There exists $C>0$ such that, when $|x| \geq C$, we have

$$
\begin{aligned}
& x \exp (\epsilon x / 2) 1_{\{x \geq 0\}}-x \exp (-\epsilon x / 2) 1_{\{x<0\}} \\
\leq & \exp (\epsilon x) 1_{\{x \geq 0\}}+\exp (-\epsilon x) 1_{\{x<0\}} \\
\leq & \exp (\epsilon x)+\exp (-\epsilon x) .
\end{aligned}
$$

On the other hand, when $|x|<C$, we have

$$
\begin{aligned}
& x \exp (\epsilon x / 2) 1_{\{x \geq 0\}}-x \exp (-\epsilon x / 2) 1_{\{x<0\}} \\
\leq & C \exp (\epsilon C / 2) 1_{\{x \geq 0\}}+C \exp (\epsilon C / 2) 1_{\{x<0\}} \\
= & C \exp (\epsilon C / 2) .
\end{aligned}
$$

Hence, for all $x \in \mathcal{X}$, we have

$$
|x \exp (t x)| \leq \exp (\epsilon x)+\exp (-\epsilon x)+C \exp (\epsilon C / 2)
$$

How do we finish?

A companion result for summation. Suppose there exists $\delta>0$ such that the following conditions are met for $t \in(y-\delta, y+\delta)$.

1. The summation $\sum_{x=0}^{\infty} g(x, t)=: u(t)$ is absolutely convergent.
2. For any fixed $x \in\{0,1,2, \ldots\}, \frac{\partial}{\partial t} g(x, t)$ exists and is a continuous function of $t$.
3. There exists $h(x) \geq 0$ such that $\left|\frac{\partial}{\partial t} g(x, t)\right| \leq h(x)$ and $\sum_{x=0}^{\infty} h(x)<\infty$.

Then $\left.\frac{d}{d t} u(t)\right|_{t=y}$ exists and equals $\left.\sum_{x=0}^{\infty} \frac{\partial}{\partial t} g(x, t)\right|_{t=y}$.

Application to geometric series. We know that

$$
\sum_{x=0}^{\infty} q^{x}=\frac{1}{1-q}
$$

for $q \in(0,1)$. We would like to differentiate in $q$ to conclude that

$$
\begin{equation*}
\sum_{x=0}^{\infty} x q^{x-1}=\frac{1}{(1-q)^{2}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{x=0}^{\infty} x(x-1) q^{x-2}=\frac{2}{(1-q)^{3}} \tag{2}
\end{equation*}
$$

as these would be useful results for evaluating $E[X]$ and $E[X(X-1)]$ if $X$ had the probability mass function $f_{X}(x):=(1-q) q^{x}$ for $x \in\{0,1,2, \ldots\}$. We will verify (1) together. Verification of (2) is left to you. Let $y$ be a fixed element of $(0,1)$, let $\delta:=\min \{y / 2,(1-y) / 2\}$, and put $g(x, q):=q^{x}$.

1. Since $(y-\delta, y+\delta) \subset(0,1)$, we have

$$
\sum_{x=0}^{\infty} g(x, q)=\sum_{x=0}^{\infty} q^{x}<\infty
$$

for $q \in(y-\delta, y+\delta)$.
2. For any fixed $x \in\{0,1,2, \ldots\}$, we have

$$
\frac{\partial}{\partial q} g(x, q)=\frac{\partial}{\partial q} q^{x}=x q^{x-1}=x \exp [(x-1) \log q]
$$

which is obviously continuous in $q \in(y-\delta, y+\delta)$.
3. For $q \in(y-\delta, y+\delta)$ and $x \in\{0,1,2, \ldots\}$, we have

$$
x \exp [(x-1) \log q] \leq x \exp [(x-1) \log (y+\delta)]
$$

There exists a positive integer $C$ such that $x \exp [(x-1) \log (y+\delta)]$ is strictly decreasing as a function of $x \in[C, \infty)$. Hence,

$$
\sum_{x=C+1}^{\infty} x \exp [(x-1) \log (y+\delta)] \leq \int_{C}^{\infty} x \exp [(x-1) \log (y+\delta)] d x
$$

and the latter is obviously finite. How do we finish?

