STA 623 — Fall 2013 — Dr. Charnigo

Section 3.3: Continuous Distributions

Normal distribution. A random variable X has the normal distribution with
mean p € (—o0,00) and standard deviation o € (0, c0) if its probability density
function is

f(x) = (2m) "o exp[—(z — p)*/(207)].

Suppose that X has the normal distribution with mean p and standard
deviation 0. Let a € (—00,0) U (0,00) and b € (—00, 00). Then we can readily
verify that a X + b has the normal distribution with mean and standard
deviation A special case is @ :== 0! and b := —uo !, which yields the
normal distribution with mean 0 and standard deviation 1 (called the standard
normal distribution).

The practical importance of the above result is that any probability involving
a normal random variable can be expressed as a probability involving a standard
normal random variable, and the cumulative distribution function of a standard
normal random variable has been tabulated. An abbreviated table is shown
below, where Z denotes a standard normal random variable. The process of
defining Z := 071X —po~! = (X — pu) /o and calculating a probability involving
X in terms of Z is called standardization.

Table 1:

z P(Z<z)|z P(Z<z)
-3 0.0013 | 1 0.8413
—2 0.0228 | 2 0.9772
-1 0.1587 | 3 0.9987

0 0.5000

To illustrate, suppose that X has the normal distribution with mean 100 and
standard deviation 10. What is P(X > 70)7 What is P(90 < X < 120)?



Normal distributions are of special interest for two reasons. First, many
physical, biological, or social phenomena can reasonably be modeled using a
normal distribution. Second, if a random variable X can be expressed as a
sum of independent random variables Xi,..., X, then under fairly general
conditions the cumulative distribution function of X can be approximated by
the cumulative distribution function of a normal random variable with mean
E[X] and standard deviation \/Var[X]. This is a consequence of the Central
Limit Theorem, with which you will become familiar in STA 606.

For instance, we know that a binomial random variable X with parameters

p and n can be expressed as X; + --- 4+ X,,, where X; := 1{success on trial i}

for i € {1,...,n}. Since X has mean np and standard deviation y/np(1 — p),
the Central Limit Theorem tells us that the cumulative distribution function of
X can be approximated by the cumulative distribution function of a normal
random variable with mean np and standard deviation \/m . Or,
put differently, (X — np)/\/np(1 —p) “looks” like a standard normal random
variable. The quality of the approximation gets better as np(1 — p) gets larger.

To illustrate, suppose that X has the binomial distribution with parameters
p = 0.5 and n = 100. Then np = 50 and /np(1 — p) = /25 = 5. Letting Z
denote a standard normal random variable, we have

PA5< X <55)=P(-1< (X —50)/5<1)~P(-1<Z<1)=

Actually, since P(45 < X <55) = P(45—¢6 < X < 55490) for any § € (0, 1], we
can validly approximate this probability by P(—1—0/5 < Z < 14§/5). Such a
J is referred to as a continuity correction. The best choice of ¢ is arguably 0.5, on
the grounds that 57-+50 is meant to “look” like X', so X = 45 should translate to
44.5 < 5Z + 50 < 45.5 rather than to (say) 5Z + 50 = 45 or 44 < 5Z + 50 < 46.
In fact, with 6 = 0.5, we obtain P(—1.1 < Z < 1.1) = 0.7287, which is in
agreement with the actual value of P(45 < X < 55) to four decimal places.



Gamma distribution. A random variable X has the gamma distribution with

parameters o € (0,00) and § € (0, 00) if its probability density function is
1 -1
= @ 1 :
f(x) F[a]ﬁax exp[—z/B]1{z=0}

We have E[X]| = a8 and Var[X] = af* We refer to a as a shape parameter
and to 3 as a scale parameter.

An alternative parametrization replaces g with 1/A, where A € (0, 00). Then
E[X] = a/X and Var[X] = a/)?. When necessary to distinguish between the
two parametrizations, we call the one with § a “mean” parametrization (because
FE[X] is proportional to ) and the one with A a “rate” parametrization (for
reasons that will emerge in STA 624, if you take that course).

Worth noting is that the shape of f(x) is highly sensitive to «, which is why
« is called a shape parameter. When « € (0,1], f(x) is strictly decreasing on
(0,00). When « exceeds 1, f(x) has a mode — i.e., a point at which f(x) is
maximized — interior to (0,00). As « continues increasing, the mode of f(x)
moves rightward and f(z) takes on a bell-shaped appearance. In fact, for very
large «a, a gamma distribution is well approximated by a normal distribution.
Thus, for purposes of modeling physical, biological, or social phenomena not
well described by a normal distribution, a gamma distribution with a small or
modest « is a more viable choice than a gamma distribution with a large a.

In the special case that a = 1, we say that X has the exponential distribution
with scale parameter 5.

In the special case that « = p/2 and [ = 2, where p is a positive integer,
we say that X has the chi-square distribution on p degrees of freedom. (In
fact, other than for convenience in producing tables for the backs of methods
textbooks, there is no real reason that a chi-square distribution must have
integer degrees of freedom. So, if we like, we can just let p be a positive real.)
What are the mean and standard deviation of a chi-square random variable on
p degrees of freedom? What will X/p “look” like when p is large?



Weibull distribution. Let v € (0,00). If X has the exponential distribution with
scale parameter 3 € (0,00), then Y := X'/7 has probability density function

fly) = %y exp[—y"/B]1 {0y

and is said to have the Weibull distribution with parameters v and 5. We have
E[Y] = BYT[1 4 1/5] and Var[Y] = B {1 +2/7] — T?[1 + 1/9]}.
For any positive real y we have

y
P(Y <vy) /oﬁt exp[—t7/p] dt
We then have
S(y) =P >y) =

and
d

H{(y) = “ay 8 S(y) =
We refer to S(y) as a survival function and to H(y) as a hazard function. We
often interpret Y as the lifetime of a person or object, although Y can also be
interpreted as the time until some generic event of interest occurs. Retaining
the former interpretation for now, the survival function returns the probability
that a person or object lives more than y time units. To understand the hazard
function, let 0 be a small positive number and consider P(Y < y +4|Y > y).
In words, this is the probability of a person or object dying in the next ¢ time
units given that the person or object is alive at time y. We have
Ply<Y <y+d) 6f(y)
PY >y) S(y)

Hence, a hazard function that increases over (0,00) signifies a belief that an

PY <y+dlY >y) = = 0H(y).

older person or object is more likely to expire over a short time interval than a
younger person or object.

Given the above calculations, what can we say about the potential applicability
of a Weibull distribution to describe a lifetime?



Beta distribution. A random variable X has the beta distribution with
parameters o € (0,00) and § € (0, 00) if its probability density function is

o) = feamga 1= o M
We have E[X] = a/(a + 8) and Var[X]| = af/[(a + B)*(a + B+ 1)].

In the special case that « = [ = 1, we say that X has the uniform
distribution on (0,1). Moreover, if a and b are any reals with a < b, then
a+ (b—a)X is said to have the uniform distribution on (a, b).

A beta distribution is sometimes employed in microarray data analysis. For
instance, suppose that there are 5000 genes and that, for each gene, we have
tested a null hypothesis that the mean expression level of the gene is the
same within each of two populations, say people with and without a particular
illness. (Here I am taking for granted that you already have some knowledge
of hypothesis testing from STA 602. You will study hypothesis testing from
a more theoretical perspective in STA 606, but that theoretical perspective is
not required here.) Thus, for each gene we have obtained a p-value. If all 5000
null hypotheses are true, then the p-values should be uniformly distributed on
(0,1). However, if some of the null hypotheses are false, then there should be
more small p-values than large p-values. What can we say about the potential
applicability of a beta distribution to describe such a collection of p-values?

Cauchy distribution. A random variable X has the Cauchy distribution with
parameters p € (—o0,00) and o € (0, 00) if its probability density function is

1 1
) = e T @ — e

We cannot call 4 a mean since E[X] does not exist as a finite number, nor can

we call o a standard deviation since F[X?] does not exist as a finite number.
Instead, we call p a location parameter and o a scale parameter. Actually, we
can be more specific and call p a median, since P(X < u) = P(X > pu) = 1/2.



Lognormal distribution. A random variable X has the lognormal distribution
with parameters u € (—o00, 00) and ¢ € (0, 00) if its probability density function
is

flw) = (2m) 2o~ o™ exp[—(log z — 11)?/(20°)]1(4=0)-

The lognormal distribution is so named because log X =: Y has the
normal distribution with mean p and standard deviation o. Thus, lognormal
distributions are appealing models for physical, biological, or social phenomena
whose quantifications are strictly positive (so that their logarithms are defined)
with logarithms that are well described by a normal distribution.

Recalling that My (t) = exp|ut + 0*t*/2], we see that

E[X] = ElexpY] = exp[u + 0*/2] and

Var[X] = E[X? - E[X)?

Double exponential distribution. A random variable X has the double exponential
distribution with parameters p € (—o00,00) and o € (0, 00) if its probability
density function is
f(x) = (20) " exp[—|z — ul /o).
While unimodal (i.e., possessing only one mode), f(x) is not bell-shaped.
Putting y := x — u, we have

Blx) - [ " 2(20) expl |z — ul/fo] dr

(.¢]

_ /_oo(y+u)(20)_1exp[—|y|/0] dy

oo

We can also show that Var[X] = 202



