STA 623 - Fall 2013 - Dr. Charnigo

Section 3.4: Exponential Families

Families of probability density functions. For simplicity I will focus on continuous random variables and probability density functions in this lecture. There are parallel developments for discrete random variables and probability mass functions.

To make explicit that a probability density function depends on a (scalar or vector) parameter θ, I can use the notation $f(x ; \theta)$. For instance, the exponential distribution with (scalar) rate parameter θ has probability density function $f(x ; \theta)=1_{\{x \in(0, \infty)\}} \theta \exp [-\theta x]$.

Let Θ denote the parameter space (i.e., the set of all possible values for θ). If $f\left(x ; \theta_{1}\right) \equiv f\left(x ; \theta_{2}\right)$ implies that $\theta_{1}=\theta_{2}$, then we say that θ is identifiable. In this case, we get a different $f(x ; \theta)$ for each $\theta \in \Theta$, so we have not one probability density function (assuming that Θ is not singleton) but rather a whole family of probability density functions. We may refer to the family, rather than to an individual probability density function within the family, as $\{f(x ; \theta): \theta \in \Theta\}$.

Example (families of probability density functions). Put $\Theta:=(0, \infty)$ and consider the family $\left\{1_{\{x \in(0, \infty)\}} \theta \exp [-\theta x]: \theta \in \Theta\right\}$. Is θ identifiable? Can you exhibit another family for which θ is not identifiable?

Exponential families. We say that $\{f(x ; \theta): \theta \in \Theta\}$ is an exponential family if each of its members has the form

$$
f(x ; \theta)=h(x) c(\theta) \exp \left[\sum_{i=1}^{k} w_{i}(\theta) t_{i}(x)\right] .
$$

Above, functions of x only are not allowed to depend on θ and vice versa.

Example (exponential families). Put $\Theta:=(0, \infty)$ and consider the family $\left\{1_{\{x \in(0, \infty)\}} \theta \exp [-\theta x]: \theta \in \Theta\right\}$. To verify that this is an exponential family, we note that $k=1$ and
$h(x)=\quad c(\theta)=$
$w_{1}(\theta)=$

$$
t_{1}(x)=
$$

Now put $\Theta:=(0, \infty)$ and consider the family $\left\{1_{\{x \in[0, \theta]\}} \theta^{-1}: \theta \in \Theta\right\}$. This is not an exponential family because we cannot express $1_{\{x \in[0, \theta]\}}$ as a product of a function of x with a function of θ. This example provides a useful principle: if the support set depends on θ, then we do not have an exponential family.

For one more example, put $\Theta:=(0, \infty)$ and consider the family $\left\{1_{\{x \in(0, \infty)\}} \theta /(x+1)^{\theta+1}: \theta \in \Theta\right\}$. To verify that this is an exponential family, we note that $k=1$ and
$h(x)=\quad c(\theta)=$
$w_{1}(\theta)=\quad t_{1}(x)=$

Moment calculations. If the probability density function of X is a member of an exponential family, then

$$
\begin{gathered}
E\left[\sum_{i=1}^{k} \frac{\partial}{\partial \theta_{j}} w_{i}(\theta) t_{i}(X)\right]=-\frac{\partial}{\partial \theta_{j}} \log c(\theta) \text { and } \\
\operatorname{Var}\left[\sum_{i=1}^{k} \frac{\partial}{\partial \theta_{j}} w_{i}(\theta) t_{i}(X)\right]=-\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log c(\theta)-E\left[\sum_{i=1}^{k} \frac{\partial^{2}}{\partial \theta_{j}^{2}} w_{i}(\theta) t_{i}(X)\right],
\end{gathered}
$$

where θ_{j} denotes the $j^{\text {th }}$ component of a vector θ. If θ is a scalar, then replace each partial differentiation in θ_{j} with an ordinary differentiation in θ.

Example (moment calculations). To see where the expected value formula comes from, note that

$$
\int_{\mathbb{R}} h(x) c(\theta) \exp \left[\sum_{i=1}^{k} w_{i}(\theta) t_{i}(x)\right] d x=1
$$

for all $\theta \in \Theta$. As such,

$$
\int_{\mathbb{R}} h(x) \exp \left[\sum_{i=1}^{k} w_{i}(\theta) t_{i}(x)\right] d x=\exp [-\log c(\theta)]
$$

Assuming that we can interchange the order of differentiation and integration (we can, but the justification is delicate), we have

$$
\int_{\mathbb{R}} h(x) \exp \left[\sum_{i=1}^{k} w_{i}(\theta) t_{i}(x)\right] \sum_{i=1}^{k} \frac{\partial}{\partial \theta_{j}} w_{i}(\theta) t_{i}(x) d x=-\frac{\partial}{\partial \theta_{j}} \log c(\theta) \exp [-\log c(\theta)] .
$$

Multiplying both sides by $c(\theta)$ yields

$$
\int_{\mathbb{R}} f(x ; \theta) \sum_{i=1}^{k} \frac{\partial}{\partial \theta_{j}} w_{i}(\theta) t_{i}(x) d x=-\frac{\partial}{\partial \theta_{j}} \log c(\theta) .
$$

To illustrate the expected value and variance formulas, put $\Theta:=(0, \infty)$ and consider the family $\left\{1_{\{x \in(0, \infty)\}} \theta /(x+1)^{\theta+1}: \theta \in \Theta\right\}$. We have

$$
\begin{aligned}
& E[\log (1+X)]= \\
& \quad \operatorname{Var}[\log (1+X)]=
\end{aligned}
$$

Curved and full exponential families. An exponential family in which the dimension of θ equals k (the number of summands inside the exponential) is called a full exponential family. An exponential family in which the dimension of θ is less than k is called a curved exponential family. The distinction between curved and full exponential families becomes important in the search for best unbiased estimators, as you will see if you take STA 607.

