STA 623 – Fall 2013 – Dr. Charnigo

Section 3.4: Exponential Families

Families of probability density functions. For simplicity I will focus on continuous random variables and probability density functions in this lecture. There are parallel developments for discrete random variables and probability mass functions.

To make explicit that a probability density function depends on a (scalar or vector) parameter θ , I can use the notation $f(x;\theta)$. For instance, the exponential distribution with (scalar) rate parameter θ has probability density function $f(x;\theta) = 1_{\{x \in (0,\infty)\}} \theta \exp[-\theta x]$.

Let Θ denote the parameter space (i.e., the set of all possible values for θ). If $f(x; \theta_1) \equiv f(x; \theta_2)$ implies that $\theta_1 = \theta_2$, then we say that θ is identifiable. In this case, we get a different $f(x; \theta)$ for each $\theta \in \Theta$, so we have not one probability density function (assuming that Θ is not singleton) but rather a whole family of probability density functions. We may refer to the family, rather than to an individual probability density function within the family, as $\{f(x; \theta) : \theta \in \Theta\}$.

Example (families of probability density functions). Put $\Theta := (0, \infty)$ and consider the family $\{1_{\{x \in (0,\infty)\}} \theta \exp[-\theta x] : \theta \in \Theta\}$. Is θ identifiable? Can you exhibit another family for which θ is not identifiable?

Exponential families. We say that $\{f(x; \theta) : \theta \in \Theta\}$ is an exponential family if each of its members has the form

$$f(x; \theta) = h(x)c(\theta) \exp\left[\sum_{i=1}^{k} w_i(\theta)t_i(x)\right].$$

Above, functions of x only are not allowed to depend on θ and vice versa.

Example (exponential families). Put $\Theta := (0, \infty)$ and consider the family $\{1_{\{x \in (0,\infty)\}} \theta \exp[-\theta x] : \theta \in \Theta\}$. To verify that this is an exponential family, we note that k = 1 and

$$h(x) = c(\theta) =$$

 $w_1(\theta) = t_1(x) =$

Now put $\Theta := (0, \infty)$ and consider the family $\{1_{\{x \in [0,\theta]\}}\theta^{-1} : \theta \in \Theta\}$. This is not an exponential family because we cannot express $1_{\{x \in [0,\theta]\}}$ as a product of a function of x with a function of θ . This example provides a useful principle: if the support set depends on θ , then we do not have an exponential family.

For one more example, put $\Theta := (0, \infty)$ and consider the family $\{1_{\{x \in (0,\infty)\}}\theta/(x+1)^{\theta+1} : \theta \in \Theta\}$. To verify that this is an exponential family, we note that k = 1 and

$$h(x) = c(\theta) =$$

 $w_1(\theta) = t_1(x) =$

Moment calculations. If the probability density function of X is a member of an exponential family, then

$$E\left[\sum_{i=1}^{k} \frac{\partial}{\partial \theta_{j}} w_{i}(\theta) t_{i}(X)\right] = -\frac{\partial}{\partial \theta_{j}} \log c(\theta) \quad \text{and}$$
$$Var\left[\sum_{i=1}^{k} \frac{\partial}{\partial \theta_{j}} w_{i}(\theta) t_{i}(X)\right] = -\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log c(\theta) - E\left[\sum_{i=1}^{k} \frac{\partial^{2}}{\partial \theta_{j}^{2}} w_{i}(\theta) t_{i}(X)\right],$$

where θ_j denotes the j^{th} component of a vector θ . If θ is a scalar, then replace each partial differentiation in θ_j with an ordinary differentiation in θ . **Example (moment calculations)**. To see where the expected value formula comes from, note that

$$\int_{\mathbb{R}} h(x)c(\theta) \exp\left[\sum_{i=1}^{k} w_i(\theta)t_i(x)\right] dx = 1$$

for all $\theta \in \Theta$. As such,

$$\int_{\mathbb{R}} h(x) \exp\left[\sum_{i=1}^{k} w_i(\theta) t_i(x)\right] dx = \exp\left[-\log c(\theta)\right].$$

Assuming that we can interchange the order of differentiation and integration (we can, but the justification is delicate), we have

$$\int_{\mathbb{R}} h(x) \exp\left[\sum_{i=1}^{k} w_i(\theta) t_i(x)\right] \sum_{i=1}^{k} \frac{\partial}{\partial \theta_j} w_i(\theta) t_i(x) \, dx = -\frac{\partial}{\partial \theta_j} \log c(\theta) \exp\left[-\log c(\theta)\right].$$

Multiplying both sides by $c(\theta)$ yields

$$\int_{\mathbb{R}} f(x;\theta) \sum_{i=1}^{k} \frac{\partial}{\partial \theta_{j}} w_{i}(\theta) t_{i}(x) \, dx = -\frac{\partial}{\partial \theta_{j}} \log c(\theta).$$

To illustrate the expected value and variance formulas, put $\Theta := (0, \infty)$ and consider the family $\{1_{\{x \in (0,\infty)\}} \theta / (x+1)^{\theta+1} : \theta \in \Theta\}$. We have

$$E[\log(1+X)] =$$
and
$$Var[\log(1+X)] =$$

Curved and full exponential families. An exponential family in which the dimension of θ equals k (the number of summands inside the exponential) is called a full exponential family. An exponential family in which the dimension of θ is less than k is called a curved exponential family. The distinction between curved and full exponential families becomes important in the search for best unbiased estimators, as you will see if you take STA 607.