STA 623 — Fall 2013 — Dr. Charnigo

Section 3.6: Inequalities and Identities

Chebychev’s Inequality. We more or less proved Chebychev’s Inequality earlier
this semester (Section 2.3) when showing that a random variable X for which

Var[X] = 0 necessarily had X = F[X] with probability one. As a refresher, for
any positive integer j we have

E[(X — E[X])?] > E[(X — E[X])*1{x_pgx)1/5)]
El(1/5)*1x - px)=1/3)]

(1/7)*P(IX — E[X]| > 1/j).
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Replacing 1/7 by a positive number e and rearranging, we have
P(|X — E[X]| > ¢) < € *B[(X — E[X])?].

In fact, Chebychev’s Inequality can be made more general. We can replace
(X — E[X])? by any nonnegative g(X) with finite expectation:

P(g(X) > €) < e 2E[g(X)].

Unfortunately, Chebychev’s Inequality is extremely conservative. For instance,
if g(X) = (X — E[X])? and ¢ = Var[X], then we obtain

P(|IX - E[X]| = SD[X]) <1,

a true but manifestly useless statement. Part of the problem is that Chebychev’s
Inequality does not exploit any information about the distribution of X (other
than that it has finite mean and variance). Inequalities that exploit information
about the distribution of X are usually less conservative.

A moment generating inequality. Here is an interesting inequality: at any ¢t > 0
for which My () is finite, and for any real number a, we have

P(X > a) < exp|—at]|Mx(t).
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Let’s prove this result. Assume for simplicity that X is a continuous random
variable with probability density function f(z). Then

P(X >a) — /Oof(x)da:
< [ el - aplfa) de

a

< /_OO exp[(z — a)t]f(z) dx

= exp|[—at|Mx(t).
The first “<” holds because and the
second “<” holds because
As an application, let us find a bound for the probability with which a gamma
random variable X with parameters a € (0,00) and 8 € (0, 00) exceeds its mean
by more than one standard deviation. Taking for granted that E[X]| = af,

Var[X] = o2, and Mx(t) = <1%5t>a for |t| < 1/8, by putting a := E[X] +

SD[X] =af ++/af and t :=1/(CP) with C € (1,00) we have

PX 2 a8+ Va8) < ewl-(a+vas)/(CH) (=g )

= exp[—a/C —+/a/C + alogC — alog(C — 1)].

The question then becomes, given o € (0, 00), for which C' € (1, 00) is the bound

smallest? Since the exponential function is monotone increasing in its argument,
we can answer this question by maximizing a/C++/a/C —alog C'+alog(C —1)
with respect to C' € (1,00). This is a calculus exercise; the end result is
C = /a+ 1. With this choice of C' we have

P(X > ap+vaf) < exp[-a/(Va+l)—va/(Va+l)+alog(va+1)—alog(va)].
For example, if & = 1, then we obtain a bound of exp[—1/2 — 1/2 + log2] =
0.7358. This bound is very conservative (the actual probability is 0.1353) but
not as bad as the useless bound of 1 provided by Chebychev’s Inequality. Note
that I am identifying {X > E[X] + SD[X]} with {|X — E[X]| > SD[X]}. Is
that justified?



A gamma identity. Your textbook authors list several identities. None of these
identities is particularly memorable, but the technique used to prove them is
worth learning.

As an illustration, I will prove an identity that your authors did not, namely
that if X is a gamma random variable with parameters o € (0,00) and 3 €
(0,00) then

Elg(X)(X — aB)] = BE[Xg'(X)]
whenever g(x) is a continuously differentiable function on (0,00) for which
both of the expectations exist as finite numbers and lim, .. g(x)zf(x) =
lim, 0 g(x)xf(x) = 0. (Why stipulate that the latter limit be 07 Aren’t we
covered since lim, oz = 07)

Putting
ﬁ—a+1
i o fla) = Frra exploa/8
and dv := ¢'(x) dz for integration by parts, we obtain v = g(z) and
6—a+1
du = Il exp[—z/8](az®t — 2%/B) dx
so that

BELYG(0] = [ et enla/flg ) do

—a+1

— @)t @ — [ o) epl-a/Bl(aat !~ 5) da
: Z
-

= Elg —ap)].




