
STA 623 – Fall 2013 – Dr. Charnigo

Section 3.6: Inequalities and Identities

Chebychev’s Inequality. We more or less proved Chebychev’s Inequality earlier

this semester (Section 2.3) when showing that a random variable X for which

V ar[X] = 0 necessarily had X = E[X] with probability one. As a refresher, for

any positive integer j we have

E[(X − E[X])2] ≥ E[(X − E[X])21{|X−E[X ]|≥1/j}]

≥ E[(1/j)21{|X−E[X ]|≥1/j}]

≥ (1/j)2P (|X − E[X]| ≥ 1/j).

Replacing 1/j by a positive number ǫ and rearranging, we have

P (|X − E[X]| ≥ ǫ) ≤ ǫ−2E[(X − E[X])2].

In fact, Chebychev’s Inequality can be made more general. We can replace

(X − E[X])2 by any nonnegative g(X) with finite expectation:

P (g(X) ≥ ǫ2) ≤ ǫ−2E[g(X)].

Unfortunately, Chebychev’s Inequality is extremely conservative. For instance,

if g(X) = (X − E[X])2 and ǫ2 = V ar[X], then we obtain

P (|X − E[X]| ≥ SD[X]) ≤ 1,

a true but manifestly useless statement. Part of the problem is that Chebychev’s

Inequality does not exploit any information about the distribution of X (other

than that it has finite mean and variance). Inequalities that exploit information

about the distribution of X are usually less conservative.

A moment generating inequality. Here is an interesting inequality: at any t ≥ 0

for which MX(t) is finite, and for any real number a, we have

P (X ≥ a) ≤ exp[−at]MX(t).
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Let’s prove this result. Assume for simplicity that X is a continuous random

variable with probability density function f(x). Then

P (X ≥ a) =

∫ ∞

a

f(x) dx

≤
∫ ∞

a

exp[(x− a)t]f(x) dx

≤
∫ ∞

−∞
exp[(x− a)t]f(x) dx

= exp[−at]MX(t).

The first “≤” holds because and the

second “≤” holds because

As an application, let us find a bound for the probability with which a gamma

random variableX with parameters α ∈ (0,∞) and β ∈ (0,∞) exceeds its mean

by more than one standard deviation. Taking for granted that E[X] = αβ,

V ar[X] = αβ2, and MX(t) =
(

1
1−βt

)α

for |t| < 1/β, by putting a := E[X] +

SD[X] = αβ +
√
αβ and t := 1/(Cβ) with C ∈ (1,∞) we have

P (X ≥ αβ +
√
αβ) ≤ exp[−(αβ +

√
αβ)/(Cβ)]

(

1

1− 1/C

)α

= exp[−α/C −
√
α/C + α logC − α log(C − 1)].

The question then becomes, given α ∈ (0,∞), for which C ∈ (1,∞) is the bound

smallest? Since the exponential function is monotone increasing in its argument,

we can answer this question by maximizing α/C+
√
α/C−α logC+α log(C−1)

with respect to C ∈ (1,∞). This is a calculus exercise; the end result is

C =
√
α + 1. With this choice of C we have

P (X ≥ αβ+
√
αβ) ≤ exp[−α/(

√
α+1)−

√
α/(

√
α+1)+α log(

√
α+1)−α log(

√
α)].

For example, if α = 1, then we obtain a bound of exp[−1/2 − 1/2 + log 2] =

0.7358. This bound is very conservative (the actual probability is 0.1353) but

not as bad as the useless bound of 1 provided by Chebychev’s Inequality. Note

that I am identifying {X ≥ E[X] + SD[X]} with {|X − E[X]| ≥ SD[X]}. Is

that justified?
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A gamma identity. Your textbook authors list several identities. None of these

identities is particularly memorable, but the technique used to prove them is

worth learning.

As an illustration, I will prove an identity that your authors did not, namely

that if X is a gamma random variable with parameters α ∈ (0,∞) and β ∈
(0,∞) then

E[g(X)(X − αβ)] = βE[Xg′(X)]

whenever g(x) is a continuously differentiable function on (0,∞) for which

both of the expectations exist as finite numbers and limx→∞ g(x)xf(x) =

limx→0 g(x)xf(x) = 0. (Why stipulate that the latter limit be 0? Aren’t we

covered since limx→0 x = 0?)

Putting

u := βxf(x) =
β−α+1

Γ[α]
xα exp[−x/β]

and dv := g′(x) dx for integration by parts, we obtain v = g(x) and

du =
β−α+1

Γ[α]
exp[−x/β](αxα−1 − xα/β) dx,

so that

βE[Xg′(X)] =

∫ ∞

0

β−α+1

Γ[α]
xα exp[−x/β]g′(x) dx

= [g(x)βxf(x)]∞0 −
∫ ∞

0

g(x)
β−α+1

Γ[α]
exp[−x/β](αxα−1 − xα/β) dx

= −
∫ ∞

0

=

∫ ∞

0

= E[g(X)(X − αβ)].
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