STA 623 - Fall 2013 - Dr. Charnigo

Section 3.6: Inequalities and Identities

Chebychev's Inequality. We more or less proved Chebychev's Inequality earlier this semester (Section 2.3) when showing that a random variable X for which $\operatorname{Var}[X]=0$ necessarily had $X=E[X]$ with probability one. As a refresher, for any positive integer j we have

$$
\begin{aligned}
E\left[(X-E[X])^{2}\right] & \geq E\left[(X-E[X])^{2} 1_{\{|X-E[X]| \geq 1 / j\}}\right] \\
& \geq E\left[(1 / j)^{2} 1_{\{|X-E[X]| \geq 1 / j\}}\right] \\
& \geq(1 / j)^{2} P(|X-E[X]| \geq 1 / j) .
\end{aligned}
$$

Replacing $1 / j$ by a positive number ϵ and rearranging, we have

$$
P(|X-E[X]| \geq \epsilon) \leq \epsilon^{-2} E\left[(X-E[X])^{2}\right] .
$$

In fact, Chebychev's Inequality can be made more general. We can replace $(X-E[X])^{2}$ by any nonnegative $g(X)$ with finite expectation:

$$
P\left(g(X) \geq \epsilon^{2}\right) \leq \epsilon^{-2} E[g(X)] .
$$

Unfortunately, Chebychev's Inequality is extremely conservative. For instance, if $g(X)=(X-E[X])^{2}$ and $\epsilon^{2}=\operatorname{Var}[X]$, then we obtain

$$
P(|X-E[X]| \geq S D[X]) \leq 1
$$

a true but manifestly useless statement. Part of the problem is that Chebychev's Inequality does not exploit any information about the distribution of X (other than that it has finite mean and variance). Inequalities that exploit information about the distribution of X are usually less conservative.

A moment generating inequality. Here is an interesting inequality: at any $t \geq 0$ for which $M_{X}(t)$ is finite, and for any real number a, we have

$$
P(X \geq a) \leq \exp [-a t] M_{X}(t)
$$

Let's prove this result. Assume for simplicity that X is a continuous random variable with probability density function $f(x)$. Then

$$
\begin{aligned}
P(X \geq a) & =\int_{a}^{\infty} f(x) d x \\
& \leq \int_{a}^{\infty} \exp [(x-a) t] f(x) d x \\
& \leq \int_{-\infty}^{\infty} \exp [(x-a) t] f(x) d x \\
& =\exp [-a t] M_{X}(t) .
\end{aligned}
$$

The first " \leq " holds because
and the second " \leq " holds because

As an application, let us find a bound for the probability with which a gamma random variable X with parameters $\alpha \in(0, \infty)$ and $\beta \in(0, \infty)$ exceeds its mean by more than one standard deviation. Taking for granted that $E[X]=\alpha \beta$, $\operatorname{Var}[X]=\alpha \beta^{2}$, and $M_{X}(t)=\left(\frac{1}{1-\beta t}\right)^{\alpha}$ for $|t|<1 / \beta$, by putting $a:=E[X]+$ $S D[X]=\alpha \beta+\sqrt{\alpha} \beta$ and $t:=1 /(C \beta)$ with $C \in(1, \infty)$ we have

$$
\begin{aligned}
P(X \geq \alpha \beta+\sqrt{\alpha} \beta) & \leq \exp [-(\alpha \beta+\sqrt{\alpha} \beta) /(C \beta)]\left(\frac{1}{1-1 / C}\right)^{\alpha} \\
& =\exp [-\alpha / C-\sqrt{\alpha} / C+\alpha \log C-\alpha \log (C-1)]
\end{aligned}
$$

The question then becomes, given $\alpha \in(0, \infty)$, for which $C \in(1, \infty)$ is the bound smallest? Since the exponential function is monotone increasing in its argument, we can answer this question by maximizing $\alpha / C+\sqrt{\alpha} / C-\alpha \log C+\alpha \log (C-1)$ with respect to $C \in(1, \infty)$. This is a calculus exercise; the end result is $C=\sqrt{\alpha}+1$. With this choice of C we have
$P(X \geq \alpha \beta+\sqrt{\alpha} \beta) \leq \exp [-\alpha /(\sqrt{\alpha}+1)-\sqrt{\alpha} /(\sqrt{\alpha}+1)+\alpha \log (\sqrt{\alpha}+1)-\alpha \log (\sqrt{\alpha})]$.
For example, if $\alpha=1$, then we obtain a bound of $\exp [-1 / 2-1 / 2+\log 2]=$ 0.7358 . This bound is very conservative (the actual probability is 0.1353) but not as bad as the useless bound of 1 provided by Chebychev's Inequality. Note that I am identifying $\{X \geq E[X]+S D[X]\}$ with $\{|X-E[X]| \geq S D[X]\}$. Is that justified?

A gamma identity. Your textbook authors list several identities. None of these identities is particularly memorable, but the technique used to prove them is worth learning.

As an illustration, I will prove an identity that your authors did not, namely that if X is a gamma random variable with parameters $\alpha \in(0, \infty)$ and $\beta \in$ $(0, \infty)$ then

$$
E[g(X)(X-\alpha \beta)]=\beta E\left[X g^{\prime}(X)\right]
$$

whenever $g(x)$ is a continuously differentiable function on $(0, \infty)$ for which both of the expectations exist as finite numbers and $\lim _{x \rightarrow \infty} g(x) x f(x)=$ $\lim _{x \rightarrow 0} g(x) x f(x)=0$. (Why stipulate that the latter limit be 0 ? Aren't we covered since $\lim _{x \rightarrow 0} x=0$?)

Putting

$$
u:=\beta x f(x)=\frac{\beta^{-\alpha+1}}{\Gamma[\alpha]} x^{\alpha} \exp [-x / \beta]
$$

and $d v:=g^{\prime}(x) d x$ for integration by parts, we obtain $v=g(x)$ and

$$
d u=\frac{\beta^{-\alpha+1}}{\Gamma[\alpha]} \exp [-x / \beta]\left(\alpha x^{\alpha-1}-x^{\alpha} / \beta\right) d x
$$

so that

$$
\begin{aligned}
\beta E\left[X g^{\prime}(X)\right] & =\int_{0}^{\infty} \frac{\beta^{-\alpha+1}}{\Gamma[\alpha]} x^{\alpha} \exp [-x / \beta] g^{\prime}(x) d x \\
& =[g(x) \beta x f(x)]_{0}^{\infty}-\int_{0}^{\infty} g(x) \frac{\beta^{-\alpha+1}}{\Gamma[\alpha]} \exp [-x / \beta]\left(\alpha x^{\alpha-1}-x^{\alpha} / \beta\right) d x \\
& =-\int_{0}^{\infty} \\
& =\int_{0}^{\infty} \\
& =E[g(X)(X-\alpha \beta)] .
\end{aligned}
$$

