
STA 623 – Fall 2013 – Dr. Charnigo

Section 4.1: Joint and Marginal Distributions

Discrete random vector and joint probability mass function. Recall that a

random variable is a(n appropriately measurable) function from an underlying

sample space Ω to the set of real numbers R. We now define a k-dimensional

random vector, k a positive integer, to be a(n appropriately measurable)

function from Ω to the k-fold Cartesian product R
k. For now we fix k = 2.

The random vector may be denoted X, or we may write X and Y to represent

its two components. Note that X and Y are themselves random variables.

If X is a discrete random vector, which is to say that X realizes only

countably many values with positive probability, then X and Y may be

described by a joint probability mass function fX,Y (x, y) := P (X = x, Y = y)

such that P ((X, Y )′ ∈ A) =
∑

{(x,y)′∈A∩S} fX,Y (x, y) for any (appropriately

measurable) set A ⊂ R
2, where S := {(x, y)′ ∈ R

2 : fX,Y (x, y) > 0} is the

support set of X. The introduction of S here avoids the question of how to

define an uncountable sum. Summation over the empty set is defined as 0.

Note that we must have fX,Y (x, y) ≥ 0 and
∑

{(x,y)′∈S} fX,Y (x, y) = 1.

Example (discrete random vector and joint probability mass function).

Suppose that X is the number of phone messages received in the next hour and

has the Poisson distribution with mean λ ∈ (0,∞), while Y is the number of

text messages received in the next hour and has the Poisson distribution with

mean µ ∈ (0,∞). If phone messages arrive independently of text messages,

then for any nonnegative integers x and y we have

fX,Y (x, y) =

This illustrates that, in some cases, the joint probability mass function for X

and Y is simply the product of the probability mass function for X with the

probability mass function for Y . However, this is not always true. Suppose
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that for {(x, y)′ ∈ R
2 : x ∈ {0, 1}, y ∈ {0, 1}} we have

fX,Y (x, y) = (x+ 2y + 1)/10.

Clearly, (x+2y+1)/10 cannot be written as a product of a function of x with a

function of y. Yet,
∑

{(x,y)′∈S}(x+2y+1)/10 = 1/10+ 2/10+ 3/10+ 4/10 = 1,

so fX,Y (x, y) is a valid joint probability mass function.

Marginal probability mass function. Since X and Y are themselves random

variables, we may be interested in describing their distributions individually.

If X is a discrete random vector, this can be accomplished by summing

the joint probability mass function over appropriate sets. Explicitly, let

u be any real number and put A := {(x, y)′ ∈ R
2 : x = u}. Then

∑

{(x,y)′∈A∩S} fX,Y (x, y) is simply P (X = u) and may be labeled fX(u). In this

way we recover the probability mass function of X, which is called a marginal

probability mass function for a reason that will become clear presently. The

marginal probability mass function of Y may be recovered similarly. I emphasize

that, while marginal probability mass functions are uniquely determined from

the joint probability mass function, the reverse is not true.

Example (marginal probability mass function). If the joint probability

mass function was obtained by multiplying the marginal probability mass

functions, then presumably there is no need to derive the marginal probability

mass functions using the approach indicated in the last paragraph. However,

suppose that the joint probability mass function is not the product of a

function of x with a function of y, as in the previous example. Then the

approach indicated in the last paragraph is useful. Indeed, with fX,Y (x, y) =

(x+ 2y + 1)/10 for {(x, y)′ ∈ R
2 : x ∈ {0, 1}, y ∈ {0, 1}} we have

fX(0) = fX(1) =

fY (0) = fY (1) =
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When the joint probability mass function fX,Y (x, y) is listed in tabular form as

below, the marginal probability mass functions fX(x) and fY (y) may be read

off the margins of the table.

fX,Y (x, y) y = 0 y = 1 fX(x)

x = 0 1/10 3/10

x = 1 2/10 4/10

fY (y) 1

To clarify my point of emphasis in the preceding paragraph, can you exhibit

a different joint probability mass function that is compatible with the above

marginal probability mass functions?

Expected value. Let g(x, y) be a(n appropriately measurable) real-valued

function of x and y. We define the expected value E[g(X, Y )] as
∑

{(x,y)′∈S} g(x, y)fX,Y (x, y), provided that the sum is absolutely convergent.

Even though we are now studying random vectors, expected value has the same

linearity and monotonicity properties discussed earlier this semester.

Example (expected value). Continuing from the last example, put

g(X, Y ) := (X + 1)(Y + 1). Then

E[g(X, Y )] =

Now put g(X, Y ) := X2. Then

E[g(X, Y )] =

However, since X2 depends only on X (i.e., not also on Y ), we can just as well

calculate E[X2] using the marginal probability mass function of X. When we

do so, we obtain

E[X2] =
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Continuous random vector and joint probability density function. With random

vectors we still face an issue like that encountered in Section 1.5 on random

variables, namely that non-discrete quantities are not necessarily continuous.

Indeed, we can explicitly define continuous random vectors to be those for which

the joint cumulative distribution function FX,Y (x, y) := P (X ≤ x, Y ≤ y)

is continuous. However, a more practical (but stringent) working definition

is that there exist a joint probability density function fX,Y (x, y) such that

P (X ∈ A) =
∫ ∫

A
fX,Y (x, y) dx dy for any (appropriately measurable) set

A ⊂ R
2. In particular, FX,Y (x, y) =

∫ x

−∞

∫ y

−∞ fX,Y (u, v) du dv and, if

fX,Y (x, y) is continuous, ∂2

∂x∂y
FX,Y (x, y) = fX,Y (x, y). Note that we must have

∫ ∫

R2 fX,Y (x, y) dx dy = 1 and that we may as well require fX,Y (x, y) ≥ 0.

Example (continuous random vector and joint probability density

function). Suppose thatX is a continuous random vector with joint probability

density function

fX,Y (x, y) = 8xy1{0<x<y<1}.

To verify that this is a valid joint probability density function, note that

∫ ∫

R2

fX,Y (x, y) dx dy =

∫ 1

0

{
∫ y

0

8xy dx

}

dy

=

∫ 1

0

8y{x2/2}y0 dy =

∫ 1

0

4y3 dy = {y4}10 = 1.

Suppose that we want to find FX,Y (x, y). Consider five cases:

1. x ≤ 0 or y ≤ 0 =⇒ FX,Y (x, y) = 0.

2. x ≥ 1 and y ≥ 1 =⇒ FX,Y (x, y) = 1.

3. x ≥ y and 0 ≤ y ≤ 1 =⇒ FX,Y (x, y) =
∫ y

0

{∫ v

0 8uv du
}

dv

=
∫ y

0 4v3 dv = y4.

4. y ≥ 1 and 0 ≤ x ≤ 1 =⇒ FX,Y (x, y) =
∫ x

0

{

∫ 1

u
8uv dv

}

du

=
∫ x

0 4(u− u3) du = 2x2 − x4.

5. 0 ≤ x ≤ y ≤ 1 =⇒ FX,Y (x, y) =
∫ x

0

{∫ y

u
8uv dv

}

du
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=
∫ x

0 4(uy2 − u3) du = 2x2y2 − x4.

Suppose that we want to find P (XY < 1/2). This is

Marginal probability density function. Just as a marginal probability mass

function is obtained by summing a joint probability mass function, a marginal

probability density function is obtained by integrating a joint probability

density function. Explicitly, we have fX(x) =
∫∞

−∞ fX,Y (x, y) dy and fY (y) =
∫∞

−∞ fX,Y (x, y) dx. An easy way to remember which is which is to note that the

marginal probability density function of X must depend on x, so the y should

be integrated out.

Example (marginal probability density function). Continuing from the

previous example, we have

fX(x) =

∫ ∞

−∞

fX,Y (x, y) dy =

∫ 1

x

8xy dy

=

for x ∈ (0, 1) and

fY (y) =

∫ ∞

−∞

fX,Y (x, y) dx =

∫ y

0

8xy dx

=

for y ∈ (0, 1).
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Expected value. Let g(x, y) be a(n appropriately measurable) real-valued

function of x and y. We define the expected value E[g(X, Y )] as
∫ ∫

R2 g(x, y)fX,Y (x, y) dx dy, provided that the integral is absolutely convergent.

Again, expected value has the same linearity and monotonicity properties

discussed earlier this semester.

Example (expected value). Continuing from the previous example, put

g(X, Y ) := XγY δ for constants γ ∈ [0,∞) and δ ∈ [0,∞). We have

E[g(X, Y )] =

Starting a new example, suppose that fX,Y (x, y) has the form fX(x)fY (y), which

is to say that the joint probability density function is the product of the marginal

probability density functions. I claim that, in this case, V ar[X+Y ] = V ar[X]+

V ar[Y ] if all of these quantities exist as finite numbers. To prove my claim, I

begin by noting that

E[XY ] =

∫ ∫

R2

xyfX,Y (x, y) dx dy =

∫

R

xfX(x) dx

∫

R

yfY (y) dy = E[X]E[Y ].

Then, putting µ := E[X] and ν := E[Y ], I have

V ar[X + Y ] = E[(X + Y )2]− (E[X + Y ])2

= E[X2 + 2XY + Y 2]− (µ2 + 2µν + ν2)

= E[X2]− µ2 + E[Y 2]− ν2 + 2E[XY ]− 2µν

= E[X2]− µ2 + E[Y 2]− ν2 + 2E[X]E[Y ]− 2µν

= E[X2]− µ2 + E[Y 2]− ν2

= V ar[X] + V ar[Y ].

You will learn next week that X and Y are called independent if their joint

probability density function decomposes into the product of their marginal

probability density functions.
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