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Section 4.2: Conditional Distributions and Independence

Conditional probability mass function and expectation. Let X be a discrete

random vector with components X and Y . Let fX,Y (x, y) denote the joint

probability mass function of X and Y , fX(x) the marginal probability mass

function of X, and fY (y) the marginal probability mass function of Y .

For any x ∈ R at which fX(x) > 0, we define

fY |X(y|x) := fX,Y (x, y)/fX(x) = P (Y = y,X = x)/P (X = x) = P (Y = y|X = x)

to be the conditional probability mass function of Y given that X = x.

The interpretation of fY |X(y|x) is that, for any (appropriately measurable)

set A ⊂ R,

P (Y ∈ A|X = x) =
∑

y∈A∩SY |x

fY |X(y|x),

where SY |x := {y ∈ R : fY |X(y|x) > 0}.

For any (appropriately measurable) function g(y), we define the conditional

expectation of g(Y ) given that X = x as

E[g(Y )|X = x] =
∑

y∈SY |x

g(y)fY |X(y|x).

Example (conditional probability mass function and expectation).

Suppose that for {(x, y)′ ∈ R
2 : x ∈ {0, 1}, y ∈ {0, 1}} we have

fX,Y (x, y) = (x+ 2y + 1)/10.

We have fX(x) = (4 + 2x)/10 for x ∈ {0, 1}, so

fY |X(y|0) =

fY |X(y|1) =

E[Y 2|X = 0] =

1



Conditional probability density function and expectation. Let X be a continuous

random vector with components X and Y . Let fX,Y (x, y) denote the joint

probability density function of X and Y , fX(x) the marginal probability density

function of X, and fY (y) the marginal probability density function of Y .

For any x ∈ R at which fX(x) > 0, we define

fY |X(y|x) := fX,Y (x, y)/fX(x)

to be the conditional probability density function of Y given that X = x.

The interpretation of fY |X(y|x) is that, for any (appropriately measurable)

set A ⊂ R,

P (Y ∈ A|X = x) =

∫
A

fY |X(y|x) dy.

For any (appropriately measurable) function g(y), we define the conditional

expectation of g(Y ) given that X = x as

E[g(Y )|X = x] =

∫
R

g(y)fY |X(y|x) dy.

Example (conditional probability density function and expectation).

Suppose that

fX,Y (x, y) = 8xy1{0<x<y<1}.

We have fX(x) = 4(x− x3)1{0<x<1}, so

fY |X(y|x) =

P (Y ≤ 3/4|X = 1/2) =

E[Y 2|X = 1/2] =

2



Independence. We say that X and Y are independent if

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

for any (appropriately measurable) sets A,B ⊂ R. If X is a discrete random

vector, then as a special case we may take A := {x} and B := {y} to obtain

the probability mass decomposition

fX,Y (x, y) = fX(x)fY (y)

for any (x, y)′ ∈ R
2. Likewise, the probability density decomposition

fX,Y (x, y) = fX(x)fY (y)

may be used to characterize independence if X is a continuous random vector,

with the technical caveat that the probability density decomposition is not

required for all (x, y)′ ∈ R
2 but only for (x, y)′ ∈ C ⊂ R

2 with P (X ∈ C) = 1.

Example (independence). Suppose that X and Y are independent (and

continuous, for simplicity in the calculations to follow). Then, whenever all

quantities below exist as finite numbers, we have

MX+Y (t) = E[exp{t(X + Y )}]

= E[exp{tX} exp{tY }]

=

∫
R

∫
R

exp[tx] exp[ty]fX,Y (x, y) dx dy

=

∫
R

exp[tx]fX(x) dx

∫
R

exp[ty]fY (y) dy

= E[exp{tX}]E[exp{tY }]

= MX(t)MY (t).

This result can be used to prove that the sum of two independent normal

random variables is normal, among some other useful relations (Cf. Written

Assignment 5, STA 623, Fall 2009).
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