
STA 623 – Fall 2013 – Dr. Charnigo

Section 4.3: Bivariate Transformations

One-to-one bivariate transformation formula. Let X be a continuous random

vector with componentsX and Y , and let fX,Y (x, y) denote the joint probability

density function of X and Y . Suppose that g1(x, y), g2(x, y) are (appropriately

measurable) functions that define a one-to-one bivariate transformation, in the

sense that g1(x, y) = g1(w, z), g2(x, y) = g2(w, z) implies x = w, y = z. Then the

equations u = g1(x, y), v = g2(x, y) can be solved for x and y, say x = h1(u, v)

and y = h2(u, v). Put U := g1(X, Y ) and V := g2(X, Y ). Assuming the

existence of all partial derivatives referenced below, the joint probability density

function of U and V is

fU,V (u, v) = fX,Y (h1(u, v), h2(u, v))
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where Det[·] returns the determinant of a matrix (assumed nonzero here) and

SU,V := {(u, v)′ ∈ R
2 : ∃(x, y)′ ∈ R

2 with u = g1(x, y), v = g2(x, y), fX,Y (x, y) > 0}.

Since any number may be regarded as a 1×1 matrix, the one-to-one bivariate

transformation formula above is readily seen to be an extension of the one-to-

one univariate transformation formula from Section 2.1,

fU(u) = fX(h(u))
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where U := g(X), h(u) := g−1(u), fX(x) is the probability density function for

X, fU(u) is the probability density function for U , and

SU := {u ∈ R : ∃x ∈ R with u = g(x), fX(x) > 0}.
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Example (one-to-one bivariate transformation formula). Suppose that

X has the chi-square distribution on 2 df,

fX(x) = (1/2) exp[−x/2]1{x>0},

and that, independently, Y has the uniform distribution on (−π/2, π/2),

fY (y) = (1/π)1{−π/2<y<π/2}.

Put g1(x, y) :=
√
x cos y and g2(x, y) :=

√
x sin y for x ∈ (0,∞) and

y ∈ (−π/2, π/2). Let U := g1(X, Y ) and V := g2(X, Y ). What is the joint

distribution of U and V ? What are the marginal distributions of U and V ?

Step 1. Find the support of U and V . Since cos y must be positive when

−π/2 < y < π/2 while sin y can be positive or negative or zero, we have

SU,V = {(u, v)′ ∈ R
2 : u > 0}.

Step 2. Verify that the transformation is one-to-one. With u =
√
x cos y

and v =
√
x sin y, we have x = u2+v2 and tan[y] = v/u. Since −π/2 < y < π/2,

tan[y] = v/u has the unique solution y = arctan[v/u]. So put h1(u, v) := u2+v2

and h2(u, v) := arctan[v/u]. The fact that we were able to solve for y and x

not only implies that the transformation is one-to-one but also provides useful

results for the next step.

Step 3. Evaluate the matrix determinant. We have
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So the matrix determinant is

Step 4. Report the joint probability density function. We have

fX,Y (h1(u, v), h2(u, v)) =

2



so that

fU,V (u, v) =

Step 5. Report the marginal probability density functions. Since fU,V (u, v)

can be written in the form g(u)h(v), the kernels of fU(u) and fV (v) are obvious.

All we need to do is determine the normalizing constants, but this is not difficult.

Since V is obviously a standard normal random variable, we must have

fV (v) = (2π)−1/2 exp[−v2/2].

This implies that

fU(u) = 2(2π)−1/2 exp[−u2/2]1{u>0}.

How would you describe the distribution of U?

Remarks. If the above example were changed by taking Y to have the uniform

distribution on (π/2, 3π/2), then the computations would remain almost the

same and we would end up with

fV (v) = (2π)−1/2 exp[−v2/2],

fU(u) = 2(2π)−1/2 exp[−u2/2]1{u<0}.

If Y had the uniform distribution on (−π/2, 3π/2), what do you think the

marginal distributions of V and U should be? The computations would be

more difficult, however, since tan y = v/u would not uniquely determine y.

How would you overcome that difficulty?
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