
STA 623 – Fall 2013 – Dr. Charnigo

Section 4.5: Covariance and Correlation

Covariance. Suppose X has mean µX ∈ (−∞,∞) and variance σ2

X ∈ (0,∞)

and that Y has mean µY ∈ (−∞,∞) and variance σ2

Y ∈ (0,∞). We define the

covariance of X and Y as

Cov[X, Y ] := E[(X − µX)(Y − µY )],

which may be written as E[XY ]−µXµY by appealing to linearity of expectation.

The covariance is positive when X and Y tend to be larger than average or

smaller than average at the same time, while the covariance is negative when

X tends to be larger than average when Y is smaller than average and vice versa.

Explorations of covariance. 1. We may ask whether the covariance in fact exists

as a finite number, under the conditions above. Let us prove that it does. Put

U := X − µX and V := Y − µY ,

so that E[U ] = E[V ] = 0 and Cov[X, Y ] = E[UV ]. Since (u − v)2 ≥ 0 for

all real u and v, we have u2 + v2 ≥ 2uv. Also, since (u + v)2 ≥ 0, we have

u2 + v2 ≥ −2uv. Thus 0 ≤ |uv| ≤ (u2 + v2)/2, and appealing to monotonicity

of expectation we have

0 = E[0] ≤ E[|UV |] ≤ E[(U 2 + V 2)/2] = (σ2

X + σ2

Y )/2 < ∞.

Since E[|UV |] is finite, the existence of E[UV ] = Cov[X, Y ] is ensured.

2. What is the covariance of X with itself?

3. What is the covariance of X and Y if they are independent?

4. Let X have the standard normal distribution (so µX = 0 and σ2

X = 1),

and put Y := X2. I claim that Y has the chi-square distribution on 1 degree

of freedom (so µY = 1 and σ2

Y = 2). To verify my claim, note that Y has

cumulative distribution function

P (Y ≤ y) = P (−√
y ≤ X ≤ √

y) = 2

∫

√
y

0

(2π)−1/2 exp[−x2/2] dx for y ≥ 0,
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so that we may take

d

dy
P (Y ≤ y) = 2(2π)−1/2 exp[−y/2]

d

dy

√
y =

1

Γ[1/2]21/2
y−1/2 exp[−y/2] for y > 0

as probability density function for Y . Clearly, X and Y are not independent.

In particular,

P (X > 1, Y > 1) = P (X > 1) 6= P (X > 1)P (Y > 1).

(Can you explain the two steps above?) On the other hand, we have

Cov[X, Y ] =

5. As the previous item suggests, when people say that covariance describes

the association between X and Y , they speak quite loosely. Really the

covariance only describes the linear association between X and Y . Nonetheless,

covariance is useful. For instance, covariance enables us to calculate variances

for sums of random variables. Indeed, for any real constants a and b we have

V ar[aX + bY ] = a2V ar[X] + b2V ar[Y ] + 2abCov[X, Y ]

by linearity of expectation.

Correlation. Suppose X has mean µX ∈ (−∞,∞) and variance σ2

X ∈ (0,∞)

and that Y has mean µY ∈ (−∞,∞) and variance σ2

Y ∈ (0,∞). We define the

correlation of X and Y as

Corr[X, Y ] :=
Cov[X, Y ]

σXσY
.

Sometimes we use the symbol ρX,Y to represent correlation (or, if no confusion

is possible, we write ρ without any subscript).

Correlation has the advantage of being constrained to lie between −1 and 1,

a fact established by your textbook authors using a calculus argument. (Your

textbook authors also show that a correlation of ±1 implies that Y = a + bX
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for some real constants a and b with probability one.) Hence a correlation of,

say, 0.9 may always be regarded as indicative of a strong linear relationship

whereas a covariance of (say) 90 may or may not be indicative of a strong linear

relationship.

Bivariate normal distribution. Correlation plays a key role in characterizing a

bivariate normal distribution. We say that X and Y have a bivariate normal

distribution if their joint probability density function is

fX,Y (x, y) = (2πσXσY

√

1− ρ2)−1×

exp

[

− 1

2(1− ρ2)

{

(

x− µX

σX

)2

− 2ρ

(

x− µX

σX

)(

y − µY

σY

)

+

(

y − µY

σY

)2
}]

,

where µX , µY ∈ (−∞,∞), σX , σY ∈ (0,∞), and ρ ∈ (−1, 1).

All five parameters have the anticipated interpretations: µX and σX are

the mean and standard deviation of the marginal distribution of X, which is

univariate normal; µY and σY are the mean and standard deviation of the

marginal distribution of Y ; and, ρ is the correlation of X and Y . Thus, when

speaking of a bivariate normal distribution, zero correlation and independence

are equivalent.

Also, the conditional distribution of Y given that X = x turns out to be

normal with mean µY + ρ(σY /σX)(x− µX) =: µY |X and variance σ2

Y (1− ρ2) =:

σ2

Y |X . This shows that simple linear regression, with which you are already

familiar from STA 602, is like estimating the parameters of a bivariate normal

distribution. Noting that the “slope” is ρ(σY /σX) = Cov[X, Y ]/V ar[X], we

can reason out a formula for the slope estimate:

Moreover, if we take the Residual Mean Square as an estimate of σ2

Y |X and the

sample variance of Y as an estimate of σ2

Y , an estimate of ρ2 is suggested:
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