STA 623 — Fall 2013 — Dr. Charnigo

Section 4.5: Covariance and Correlation

Covariance. Suppose X has mean ux € (—o0,00) and variance 0% € (0, 00)
and that Y has mean py € (—o00,00) and variance o3 € (0,00). We define the
covariance of X and Y as

Cov[X,Y] := E[(X — ux)(Y — uy)],

which may be written as E[XY]—puxuy by appealing to linearity of expectation.

The covariance is positive when X and Y tend to be larger than average or
smaller than average at the same time, while the covariance is negative when
X tends to be larger than average when Y is smaller than average and vice versa.

Explorations of covariance. 1. We may ask whether the covariance in fact exists
as a finite number, under the conditions above. Let us prove that it does. Put

U:=X—ux and V :=Y — uy,
so that E[U] = E[V] = 0 and Cov[X,Y] = E[UV]. Since (u — v)? > 0 for
all real u and v, we have u? + v? > 2uv. Also, since (u + v)? > 0, we have
u? +v? > —2uv. Thus 0 < Juv| < (u* +v?)/2, and appealing to monotonicity
of expectation we have
0= E[0] < E[JUV|] < E[(U*+V?)/2] = (0% + 03)/2 < 0.

Since E[|UV] is finite, the existence of E[UV] = Cov[X, Y] is ensured.

2. What is the covariance of X with itselt?

3. What is the covariance of X and Y if they are independent?

4. Let X have the standard normal distribution (so px = 0 and 0% = 1),
and put Y := X2. I claim that Y has the chi-square distribution on 1 degree
of freedom (so gy = 1 and o3 = 2). To verify my claim, note that ¥ has
cumulative distribution function

VY
PY<y)=P(—\/y< X < fy) = 2/0 (2m) V2 exp[—22/2] dz  for y > 0,
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so that we may take

dilyP(Y <y) = 2(2m) " exp[—y/2]

d 1

— =y Pexpl—y/2] f
dy\@ T2 exp[—y/2] fory >0

as probability density function for Y. Clearly, X and Y are not independent.
In particular,

P(X>1Y>1)=P(X >1)#P(X >1)P(Y > 1).
(Can you explain the two steps above?) On the other hand, we have
Cov[X,Y] =

5. As the previous item suggests, when people say that covariance describes
the association between X and Y, they speak quite loosely. Really the
covariance only describes the linear association between X and Y. Nonetheless,
covariance is useful. For instance, covariance enables us to calculate variances
for sums of random variables. Indeed, for any real constants a and b we have

Var[aX 4+ bY] = a*Var[X] + b*Var[Y] + 2abCov[ X, Y]

by linearity of expectation.

Correlation. Suppose X has mean py € (—00,00) and variance 0% € (0, 00)
and that Y has mean py € (—oo, 00) and variance o} € (0, 00). We define the

correlation of X and Y as

XY
Corr[X,Y] := CovlX, Y] ]
OxO0y

Sometimes we use the symbol pxy to represent correlation (or, if no confusion
is possible, we write p without any subscript).
Correlation has the advantage of being constrained to lie between —1 and 1,

a fact established by your textbook authors using a calculus argument. (Your
textbook authors also show that a correlation of +1 implies that ¥ = a + bX
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for some real constants a and b with probability one.) Hence a correlation of,
say, 0.9 may always be regarded as indicative of a strong linear relationship
whereas a covariance of (say) 90 may or may not be indicative of a strong linear
relationship.

Bivariate normal distribution. Correlation plays a key role in characterizing a
bivariate normal distribution. We say that X and Y have a bivariate normal
distribution if their joint probability density function is

fxy(@,y) = (2roxoyy/1—p?)~'x

oo [ { (552 2 (522 (552) - (552) )]

where iy, gy € (—00,00), ox,0y € (0,00), and p € (—1,1).

All five parameters have the anticipated interpretations: px and ox are
the mean and standard deviation of the marginal distribution of X, which is
univariate normal; py and oy are the mean and standard deviation of the
marginal distribution of Y; and, p is the correlation of X and Y. Thus, when
speaking of a bivariate normal distribution, zero correlation and independence
are equivalent.

Also, the conditional distribution of Y given that X = x turns out to be
normal with mean iy + p(oy /ox)(x — px) =: py|x and variance o3 (1 — p*) =:
0}2,| - This shows that simple linear regression, with which you are already
familiar from STA 602, is like estimating the parameters of a bivariate normal
distribution. Noting that the “slope” is p(oy/ox) = Cov[X,Y]/Var[X], we
can reason out a formula for the slope estimate:

Moreover, if we take the Residual Mean Square as an estimate of 012/| + and the
sample variance of Y as an estimate of 0%, an estimate of p? is suggested:



