STA 623 - Fall 2013 - Dr. Charnigo

Section 4.6: Multivariate Distributions

Probability mass functions. Let \mathbf{X} be a random vector with components X_{1}, \ldots, X_{n}, where n is a positive integer greater than 2 . If \mathbf{X} realizes only finitely or countably many values, then we say that \mathbf{X} is discrete. In this case, \mathbf{X} may be characterized by a joint probability mass function

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right):=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)
$$

such that

$$
P(\mathbf{X} \in A)=\sum_{\left(x_{1}, \ldots, x_{n}\right)^{\prime} \in A \cap S_{\mathbf{X}}} f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)
$$

for any (appropriately measurable) set $A \subset \mathbb{R}^{n}$ and $S_{\mathbf{X}}$ denotes the support of the joint probability mass function.

The marginal probability mass function of X_{1} is obtained by summation,

$$
f_{X_{1}}(u)=\sum_{\left(x_{1}, \ldots, x_{n}\right)^{\prime} \in S_{\mathbf{X}}: x_{1}=u} f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) .
$$

What if we want the joint probability mass function of X_{1} and X_{2} only (i.e., not also X_{3} through X_{n})? Again we can employ summation,

$$
f_{X_{1}, X_{2}}(u, v)=\sum_{\left(x_{1}, \ldots, x_{n}\right)^{\prime} \in S_{\mathbf{X}}: x_{1}=u, x_{2}=v} f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) .
$$

The conditional probability mass function of X_{1} given that $X_{2}=x_{2}, \ldots, X_{n}=$ x_{n} (assumed to be an event with positive probability) is obtained by division,

$$
f_{X_{1} \mid X_{2}, \ldots, X_{n}}\left(x_{1} \mid x_{2}, \ldots, x_{n}\right)=f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) / f_{X_{2}, \ldots, X_{n}}\left(x_{2}, \ldots, x_{n}\right) .
$$

If the joint probability mass function of X_{1}, \ldots, X_{n} factors into their marginal probability mass functions, then we say that X_{1}, \ldots, X_{n} are independent and in this case the conditional probability mass functions coincide with the marginal probability mass functions.

Example (probability mass functions). Let $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}\right)^{\prime}$ have the joint probability mass function $\left(1+x_{1}+2 x_{2}+3 x_{3}\right) / 32$ for $x_{1}, x_{2}, x_{3} \in\{0,1\}$. The marginal probability mass function of X_{1} is

The joint probability mass function of X_{2} and X_{3} is

The conditional probability mass function of X_{1} given that $X_{2}=X_{3}=0$ is

Probability density functions. There are parallel developments for probability density functions pertaining to the components of a continuous random vector X. First try formulating these developments yourself, without consulting the textbook. Then use the textbook as a check.

Expectations. Let g be a(n appropriately measurable) function from \mathbb{R}^{n} to \mathbb{R} and \mathbf{X} a discrete or continuous random vector. Assuming absolute convergence of the appropriate expression below, we define the expected value of $g\left(X_{1}, \ldots, X_{n}\right)$ as

$$
\sum_{\left(x_{1}, \ldots, x_{n}\right)^{\prime} \in S_{\mathbf{X}}} g\left(x_{1}, \ldots, x_{n}\right) f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)
$$

if \mathbf{X} is discrete and as

$$
\int_{\mathbb{R}^{n}} g\left(x_{1}, \ldots, x_{n}\right) f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

is \mathbf{X} is continuous. For an expectation conditional on $X_{2}=x_{2}, \ldots, X_{n}=$ x_{n}, replace $f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)$ by $f_{X_{1} \mid X_{2}, \ldots, X_{n}}\left(x_{1} \mid x_{2}, \ldots, x_{n}\right)$, summation over $\left(x_{1}, \ldots, x_{n}\right)^{\prime} \in S_{\mathbf{X}}$ by summation over $x_{1} \in S_{X_{1} \mid x_{2}, \ldots, x_{n}}$, and integration in $d x_{1} \ldots d x_{n}$ over \mathbb{R}^{n} by integration in $d x_{1}$ over \mathbb{R}.

Useful results on expectations. If X_{1}, \ldots, X_{n} are independent, then for (appropriately measurable) functions g_{1}, \ldots, g_{n} from \mathbb{R} to \mathbb{R} we have

$$
E\left[g_{1}\left(X_{1}\right) \times \cdots \times g_{n}\left(X_{n}\right)\right]=E\left[g_{1}\left(X_{1}\right)\right] \times \cdots \times E\left[g_{n}\left(X_{n}\right)\right],
$$

assuming all expectations exist as finite numbers. A special case occurs when $g_{1}(x)=\cdots=g_{n}(x)=\exp [t x]$,

$$
M_{X_{1}+\ldots+X_{n}}(t)=M_{X_{1}}(t) \times \cdots \times M_{X_{n}}(t) .
$$

The latter result can be used to show that some families of distributions are closed under convolution (i.e., summing independent random variables from the family yields another random variable from the same family).

One-to-one multivariate transformation formula. Let \mathbf{X} be a continuous random vector with components X_{1}, \ldots, X_{n} whose joint probability density function is $f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)$. Suppose that $g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{n}\right)$ are (appropriately measurable) functions that define a one-to-one multivariate transformation so that the equations $u_{1}=g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, u_{n}=g_{n}\left(x_{1}, \ldots, x_{n}\right)$ can be solved for x_{1}, \ldots, x_{n}, say $x_{1}=h_{1}\left(u_{1}, \ldots, u_{n}\right), \ldots, x_{n}=h_{n}\left(u_{1}, \ldots, u_{n}\right)$. Put $U_{1}:=g_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, U_{n}:=g_{n}\left(X_{1}, \ldots, X_{n}\right)$. Assuming the existence of all partial derivatives referenced below, the joint probability density function of U_{1}, \ldots, U_{n} is

$$
\begin{gathered}
f_{U_{1}, \ldots, U_{n}}\left(u_{1}, \ldots, u_{n}\right)=f_{X_{1}, \ldots, X_{n}}\left(h_{1}\left(u_{1}, \ldots, u_{n}\right), \ldots, h_{n}\left(u_{1}, \ldots, u_{n}\right)\right) \times \\
\left|\operatorname{Det}\left[\frac{\partial \mathbf{h}}{\partial \mathbf{u}}\right]\right| 1_{\left.\left\{u_{1}, \ldots, u_{n}\right)^{\prime} \in S_{\left.U_{1}, \ldots, U_{n}\right\}}\right\}},
\end{gathered}
$$

where $\operatorname{Det}[\cdot]$ returns the determinant of a matrix (assumed nonzero here), $\frac{\partial \mathbf{h}}{\partial \mathbf{u}}$ is the $n \times n$ matrix of partial derivatives of $h_{1}\left(u_{1}, \ldots, u_{n}\right), \ldots, h_{n}\left(u_{1}, \ldots, u_{n}\right)$ in u_{1}, \ldots, u_{n}, and

$$
\begin{gathered}
S_{U_{1}, \ldots, U_{n}}:=\left\{\left(u_{1}, \ldots, u_{n}\right)^{\prime} \in \mathbb{R}^{n}: \exists\left(x_{1}, \ldots, x_{n}\right)^{\prime} \in \mathbb{R}^{n}\right. \text { with } \\
\left.u_{1}=g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, u_{n}=g_{n}\left(x_{1}, \ldots, x_{n}\right), f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)>0\right\} .
\end{gathered}
$$

