
STA 623 – Fall 2013 – Dr. Charnigo

Section 4.6: Multivariate Distributions

Probability mass functions. Let X be a random vector with components

X1, . . . , Xn, where n is a positive integer greater than 2. If X realizes only

finitely or countably many values, then we say that X is discrete. In this case,

X may be characterized by a joint probability mass function

fX1,...,Xn
(x1, . . . , xn) := P (X1 = x1, . . . , Xn = xn)

such that

P (X ∈ A) =
∑

(x1,...,xn)′∈A∩SX

fX1,...,Xn
(x1, . . . , xn)

for any (appropriately measurable) set A ⊂ R
n and SX denotes the support of

the joint probability mass function.

The marginal probability mass function of X1 is obtained by summation,

fX1
(u) =

∑

(x1,...,xn)′∈SX : x1=u

fX1,...,Xn
(x1, . . . , xn).

What if we want the joint probability mass function of X1 and X2 only (i.e.,

not also X3 through Xn)? Again we can employ summation,

fX1,X2
(u, v) =

∑

(x1,...,xn)′∈SX : x1=u,x2=v

fX1,...,Xn
(x1, . . . , xn).

The conditional probability mass function ofX1 given thatX2 = x2, . . . , Xn =

xn (assumed to be an event with positive probability) is obtained by division,

fX1|X2,...,Xn
(x1|x2, . . . , xn) = fX1,...,Xn

(x1, . . . , xn)/fX2,...,Xn
(x2, . . . , xn).

If the joint probability mass function of X1, . . . , Xn factors into their marginal

probability mass functions, then we say that X1, . . . , Xn are independent and in

this case the conditional probability mass functions coincide with the marginal

probability mass functions.
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Example (probability mass functions). Let X = (X1, X2, X3)
′ have the

joint probability mass function (1 + x1 + 2x2 + 3x3)/32 for x1, x2, x3 ∈ {0, 1}.

The marginal probability mass function of X1 is

The joint probability mass function of X2 and X3 is

The conditional probability mass function of X1 given that X2 = X3 = 0 is

Probability density functions. There are parallel developments for probability

density functions pertaining to the components of a continuous random vector

X. First try formulating these developments yourself, without consulting the

textbook. Then use the textbook as a check.

Expectations. Let g be a(n appropriately measurable) function from R
n to R and

X a discrete or continuous random vector. Assuming absolute convergence of

the appropriate expression below, we define the expected value of g(X1, . . . , Xn)

as
∑

(x1,...,xn)′∈SX

g(x1, . . . , xn)fX1,...,Xn
(x1, . . . , xn)

if X is discrete and as
∫

Rn

g(x1, . . . , xn)fX1,...,Xn
(x1, . . . , xn) dx1 . . . dxn

is X is continuous. For an expectation conditional on X2 = x2, . . . , Xn =

xn, replace fX1,...,Xn
(x1, . . . , xn) by fX1|X2,...,Xn

(x1|x2, . . . , xn), summation over

(x1, . . . , xn)
′ ∈ SX by summation over x1 ∈ SX1|x2,...,xn

, and integration in

dx1 . . . dxn over Rn by integration in dx1 over R.
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Useful results on expectations. If X1, . . . , Xn are independent, then for

(appropriately measurable) functions g1, . . . , gn from R to R we have

E[g1(X1)× · · · × gn(Xn)] = E[g1(X1)]× · · · × E[gn(Xn)],

assuming all expectations exist as finite numbers. A special case occurs when

g1(x) = · · · = gn(x) = exp[tx],

MX1+...+Xn
(t) = MX1

(t)× · · · ×MXn
(t).

The latter result can be used to show that some families of distributions are

closed under convolution (i.e., summing independent random variables from the

family yields another random variable from the same family).

One-to-one multivariate transformation formula. Let X be a continuous

random vector with components X1, . . . , Xn whose joint probability density

function is fX1,...,Xn
(x1, . . . , xn). Suppose that g1(x1, . . . , xn), . . . , gn(x1, . . . , xn)

are (appropriately measurable) functions that define a one-to-one multivariate

transformation so that the equations u1 = g1(x1, . . . , xn), . . . , un = gn(x1, . . . , xn)

can be solved for x1, . . . , xn, say x1 = h1(u1, . . . , un), . . . , xn = hn(u1, . . . , un).

Put U1 := g1(X1, . . . , Xn), . . . , Un := gn(X1, . . . , Xn). Assuming the existence

of all partial derivatives referenced below, the joint probability density function

of U1, . . . , Un is

fU1,...,Un
(u1, . . . , un) = fX1,...,Xn

(h1(u1, . . . , un), . . . , hn(u1, . . . , un))×
∣

∣

∣

∣

Det

[

∂h

∂u

]
∣

∣

∣

∣

1{u1,...,un)′∈SU1,...,Un},

where Det[·] returns the determinant of a matrix (assumed nonzero here), ∂h
∂u

is the n× n matrix of partial derivatives of h1(u1, . . . , un), . . . , hn(u1, . . . , un) in

u1, . . . , un, and

SU1,...,Un
:= {(u1, . . . , un)

′ ∈ R
n : ∃(x1, . . . , xn)

′ ∈ R
n with

u1 = g1(x1, . . . , xn), . . . , un = gn(x1, . . . , xn), fX1,...,Xn
(x1, . . . , xn) > 0}.
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