STA 623 - Fall 2013 - Dr. Charnigo

Section 4.7: Inequalities

Hölder's Inequality and Cauchy-Schwarz Inequality. Let p and q be positive numbers with $1 / p+1 / q=1$. Then, for any random variables X and Y, we have

$$
|E[X Y]| \leq E[|X Y|] \leq\left(E\left[|X|^{p}\right]\right)^{1 / p}\left(E\left[|Y|^{q}\right]\right)^{1 / q}
$$

whenever all of these expectations exist as finite numbers. Your textbook authors provide the proof.

The special case when $p=q=2$ is called the Cauchy-Schwarz Inequality,

$$
|E[X Y]| \leq E[|X Y|] \leq\left(E\left[X^{2}\right]\right)^{1 / 2}\left(E\left[Y^{2}\right]\right)^{1 / 2}
$$

Applications of Hölder's Inequality and Cauchy-Schwarz Inequality.

1. Suppose that X and Y are random variables with finite second moments. Can we derive the relationship $\left|\rho_{X Y}\right| \leq 1$ from the Cauchy-Schwarz Inequality? We need to exercise some care here since $E[X Y]$ is not the same as $\operatorname{Cov}[X, Y]$ unless $E[X]$ or $E[Y]$ happens to equal 0 .
2. By letting Y equal 1 with probability 1 , we see that Hölder's Inequality yields

$$
E[|X|] \leq\left(E\left[|X|^{p}\right]\right)^{1 / p}
$$

at any $p \in(1, \infty)$ for which both expectations exist as finite numbers. What is the interpretation of this result when $p=2$?
3. Let a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} be arbitrary real constants. I claim that

$$
\sum_{i=1}^{n}\left|a_{i} b_{i}\right| \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|b_{i}\right|^{q}\right)^{1 / q}
$$

Can you explain how this follows from Hölder's Inequality?
4. A special case of item 3 arises when $b_{1}=\cdots=b_{n}=1$ and $p=q=2$,

$$
\sum_{i=1}^{n}\left|a_{i}\right| \leq n^{1 / 2}\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2}
$$

Thus, if you are told that $\sum_{i=1}^{n} a_{i, n}^{2} \rightarrow 0$ as $n \rightarrow \infty$, you may conclude that $n^{-1 / 2} \sum_{i=1}^{n}\left|a_{i, n}\right| \rightarrow 0$. (Here I write $a_{i, n}$ rather than a_{i} since the summands may change with n.) Is this conclusion valid without the absolute value, $n^{-1 / 2} \sum_{i=1}^{n} a_{i, n} \rightarrow 0$? Is this conclusion valid without the $n^{-1 / 2}, \sum_{i=1}^{n}\left|a_{i, n}\right| \rightarrow 0$?

Jensen's Inequality. Let X be a random variable whose support set is contained in an interval $I \subset \mathbb{R}$, and suppose that g is a convex function from I to \mathbb{R}. That is, suppose that $g(t u+(1-t) v) \leq t g(u)+(1-t) g(v)$ for $t \in(0,1), u \in I$, and $v \in I$. (If g is twice differentiable, then nonnegativity of the second derivative implies convexity of g.) Provided that both expectations exist as finite numbers, we have

$$
E[g(X)] \geq g(E[X])
$$

Your textbook authors provide the proof.
A function g is said to be concave if $-g$ is convex. (If g is twice differentiable, then nonpositivity of the second derivative implies concavity of g.) Jensen's

Inequality is reversed for concave g,

$$
E[g(X)] \leq g(E[X])
$$

Remarks on Jensen's Inequality.

1. To remember the direction of the inequality, think of the convex function $g(x):=x^{2}$. You know that $E\left[X^{2}\right]$ must be greater than or equal to $(E[X])^{2}$ because their difference is $\operatorname{Var}[X]$, which must be nonnegative.
2. In some instances, we may wish to obtain the stronger conclusion that

$$
E[g(X)]>g(E[X])
$$

However, the stronger conclusion is not universally valid. For instance, if X is degenerate or g is linear, then we have equality. A sufficient condition for the stronger conclusion is that X not be degenerate and g have strictly positive second derivative.

An application of Jensen's Inequality. Let X have the gamma distribution with known shape parameter $n \in\{2,3, \ldots\}$ and unknown rate parameter $\lambda \in(0, \infty)$. Suppose that we wish to "guess" λ after observing a realization of X. Noting that the expected value of X is n / λ, we may think that the realization of X is a good guess for n / λ and hence the realization of n / X is a good guess for λ. While this strategy does not seem unreasonable, on average we will [choose one and then justify: underestimate / overestimate] λ.

Note that we did not need to compute $E[n / X]$ to conclude that it differed from λ. But, just for fun, let us compute $E[n / X]$ anyway:

