
STA 623 – Fall 2013 – Dr. Charnigo

Section 4.7: Inequalities

Hölder’s Inequality and Cauchy-Schwarz Inequality. Let p and q be positive

numbers with 1/p + 1/q = 1. Then, for any random variables X and Y , we

have

|E[XY ]| ≤ E[|XY |] ≤ (E[|X|p])1/p(E[|Y |q])1/q

whenever all of these expectations exist as finite numbers. Your textbook

authors provide the proof.

The special case when p = q = 2 is called the Cauchy-Schwarz Inequality,

|E[XY ]| ≤ E[|XY |] ≤ (E[X2])1/2(E[Y 2])1/2.

Applications of Hölder’s Inequality and Cauchy-Schwarz Inequality.

1. Suppose that X and Y are random variables with finite second moments.

Can we derive the relationship |ρXY | ≤ 1 from the Cauchy-Schwarz Inequality?

We need to exercise some care here since E[XY ] is not the same as Cov[X, Y ]

unless E[X] or E[Y ] happens to equal 0.

2. By letting Y equal 1 with probability 1, we see that Hölder’s Inequality

yields

E[|X|] ≤ (E[|X|p])1/p

at any p ∈ (1,∞) for which both expectations exist as finite numbers. What is

the interpretation of this result when p = 2?
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3. Let a1, . . . , an and b1, . . . , bn be arbitrary real constants. I claim that

n
∑

i=1

|aibi| ≤

(

n
∑

i=1

|ai|
p

)1/p( n
∑

i=1

|bi|
q

)1/q

.

Can you explain how this follows from Hölder’s Inequality?

4. A special case of item 3 arises when b1 = · · · = bn = 1 and p = q = 2,

n
∑

i=1

|ai| ≤ n1/2

(

n
∑

i=1

a2i

)1/2

.

Thus, if you are told that
∑n

i=1
a2i,n → 0 as n → ∞, you may conclude that

n−1/2
∑n

i=1
|ai,n| → 0. (Here I write ai,n rather than ai since the summands

may change with n.) Is this conclusion valid without the absolute value,

n−1/2
∑n

i=1
ai,n → 0? Is this conclusion valid without the n−1/2,

∑n
i=1

|ai,n| → 0?

Jensen’s Inequality. Let X be a random variable whose support set is contained

in an interval I ⊂ R, and suppose that g is a convex function from I to R. That

is, suppose that g(tu+ (1− t)v) ≤ tg(u) + (1− t)g(v) for t ∈ (0, 1), u ∈ I, and

v ∈ I. (If g is twice differentiable, then nonnegativity of the second derivative

implies convexity of g.) Provided that both expectations exist as finite numbers,

we have

E[g(X)] ≥ g(E[X]).

Your textbook authors provide the proof.

A function g is said to be concave if −g is convex. (If g is twice differentiable,

then nonpositivity of the second derivative implies concavity of g.) Jensen’s
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Inequality is reversed for concave g,

E[g(X)] ≤ g(E[X]).

Remarks on Jensen’s Inequality.

1. To remember the direction of the inequality, think of the convex function

g(x) := x2. You know that E[X2] must be greater than or equal to (E[X])2

because their difference is V ar[X], which must be nonnegative.

2. In some instances, we may wish to obtain the stronger conclusion that

E[g(X)] > g(E[X]).

However, the stronger conclusion is not universally valid. For instance, if X is

degenerate or g is linear, then we have equality. A sufficient condition for the

stronger conclusion is that X not be degenerate and g have strictly positive

second derivative.

An application of Jensen’s Inequality. Let X have the gamma distribution with

known shape parameter n ∈ {2, 3, . . .} and unknown rate parameter λ ∈ (0,∞).

Suppose that we wish to “guess” λ after observing a realization of X. Noting

that the expected value of X is n/λ, we may think that the realization of X is

a good guess for n/λ and hence the realization of n/X is a good guess for λ.

While this strategy does not seem unreasonable, on average we will [choose one

and then justify: underestimate / overestimate] λ.

Note that we did not need to compute E[n/X] to conclude that it differed

from λ. But, just for fun, let us compute E[n/X] anyway:
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