
STA 623 – Fall 2013 – Dr. Charnigo

Section 5.2: Sums of Random Variables from a Random Sample

Statistics. Suppose that X1, . . . , Xn are iid. Let T (x1, . . . , xn) be a(n

appropriately measurable) function from R
n to R

k for some positive integer

k. We refer to the random variable or vector T (X1, . . . , Xn) as a statistic and

to its probabilistic behavior as a sampling distribution.

Sample mean. The sample mean X̄ := n−1
∑n

i=1
Xi is one of the most familiar

statistics. Presuming that X1, . . . , Xn have common mean µ ∈ R and standard

deviation σ ∈ (0,∞), we readily calculate that

E[X̄] = n−1

n
∑

i=1

E[Xi] = n−1

n
∑

i=1

µ = µ

and

V ar[X̄ ] = n−2

n
∑

i=1

V ar[Xi] = n−2

n
∑

i=1

σ2 = σ2/n.

Since each of X̄ and µ is called a mean, referring to the former as a sample

mean and to the latter as a population mean can reduce confusion. The first

result above also shows that the sample mean is an unbiased estimator of the

population mean, in the sense that the expected value of the estimator equals

the quantity being estimated. In particular, the sample mean has no systematic

tendency, over repeated sampling, either to overestimate or to underestimate

the population mean.

Neither result above requires X1, . . . , Xn to be normally distributed. On the

other hand, if X1, . . . , Xn are normally distributed, then so is X̄ . Astonishingly,

X̄ is approximately normally distributed even if X1, . . . , Xn are not, the

approximation becoming better and better as n increases. Formally, for any

real number x we have

lim
n→∞

P

(

X̄ − µ

σ/
√
n

≤ x

)

=

∫ x

−∞
(2π)−1/2 exp[−t2/2] dt.

This kind of limiting behavior — that is, convergence of cumulative distribution

functions — is referred to as convergence in distribution or, synonymously,
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convergence in law. The particular result shown above is called the Central

Limit Theorem. You will see a proof of the Central Limit Theorem in STA 606.

The proof uses moment generating functions.

Sample variance. The sample variance S2 := (n − 1)−1
∑n

i=1
(Xi − X̄)2 and

sample standard deviation S :=
√
S2 are also well known. Put c1 := (n− 1)/n,

c2 := −1/n, c3 := −1/n, . . . , cn := −1/n. We have

E[S2] = (n− 1)−1

n
∑

i=1

E[(Xi − X̄)2]

= (n− 1)−1nE[(X1 − X̄)2]

= (n− 1)−1nE[(
n

∑

j=1

cjXj)
2]

= (n− 1)−1nE[

n
∑

j=1

n
∑

k=1

cjckXjXk]

= (n− 1)−1n

n
∑

j=1

n
∑

k=1

cjckE[XjXk]

= (n− 1)−1n

n
∑

j=1

n
∑

k=1

cjck(µ
2 + σ21{j=k})

= (n− 1)−1n{
n

∑

j=1

n
∑

k=1

cjckµ
2 +

n
∑

j=1

c2jσ
2}

= (n− 1)−1n{µ2

n
∑

j=1

cj

n
∑

k=1

ck + σ2[(n− 1)2 + (n− 1)]/n2}

= (n− 1)−1nσ2(n− 1)n/n2

= σ2.

Your textbook authors give a much shorter proof of this result by appealing to

the fact that
∑n

i=1
(Xi−X̄)2 =

∑n
i=1

X2
i −nX̄2. Understanding the longer proof

is worthwhile, however, since it illustrates a general technique for calculating the

expected value of any positive power of any linear combination of X1, . . . , Xn.

Presuming that X1, . . . , Xn have finite fourth moment, one can also show
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that

V ar[S2] = n−1{E[(X1 − µ)4]− (n− 3)V ar[X1]
2/(n− 1)}.

If X1, . . . , Xn are normally distributed, then E[(X1 − µ)4] = 3σ4 and

V ar[S2] = 2σ4/(n− 1).

Techniques for finding the distribution of a sum. You have already seen that

moment generating functions may be useful for finding the distribution of X1+

· · ·+Xn. However, sometimes this approach fails because either: (i) the moment

generating function of X1 + · · ·+Xn is not recognizable; or, (ii) X1, . . . , Xn do

not have a finite moment generating function in a neighborhood of 0.

An alternative approach that sometimes works is to apply the convolution

formula

fX1+X2
(x) =

∑

w∈Z
fX1

(w)fX2
(x− w)

for integer-valued discrete random variables or

fX1+X2
(x) =

∫

R

fX1
(w)fX2

(x− w) dw

for real-valued continuous random variables, perhaps followed by mathematical

induction. The convolution formula does not require that X1 and X2 be

identically distributed but does require that they be independent. Your

textbook authors prove the continuous case via the bivariate transformation

formula. A proof of the discrete case emerges from the law of total probability

with A := {X1 +X2 = x} and Bw := {X1 = w} for w ∈ Z,

P (A) =
∑

w∈Z
P (A|Bw)P (Bw)

or

P (X1 +X2 = x) =
∑

w∈Z
P (X1 +X2 = x|X1 = w)P (X1 = w)

=
∑

w∈Z
P (X2 = x− w|X1 = w)P (X1 = w)

=
∑

w∈Z
P (X2 = x− w)P (X1 = w).
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