STA 623 - Fall 2013 - Dr. Charnigo

Written Assignment 1 Solutions

1. Claim. $\cap_{j=1}^{\infty} \cup_{n=j}^{\infty} \cap_{i=n}^{\infty} A_{i}=\cup_{n=1}^{\infty} \cap_{i=n}^{\infty} A_{i}$, the set of elements appearing in all but finitely many of A_{1}, A_{2}, \ldots.

Proof. Fix a positive integer $j>1$. Let $D_{j}:=\cup_{n=j}^{\infty} E_{n}$ and $E_{n}:=\cap_{i=n}^{\infty} A_{i}$. If $x \in D_{j}$, then there exists $N(\geq j \geq 1)$ such that $x \in E_{N}$. Hence $x \in \cup_{n=1}^{\infty} E_{n}=D_{1}$, so that $D_{j} \subset D_{1}$.

If $x \in D_{1}$, then there exists $N(\geq 1)$ such that $x \in E_{N}$. Consider two cases. If $N \geq j$, then $x \in \cup_{n=j}^{\infty} E_{n}=D_{j}$ and so $D_{1} \subset D_{j}$. If $N<j$, then $x \in\left(\cap_{i=N}^{j-1} A_{i}\right) \cap\left(\cap_{i=j}^{\infty} A_{i}\right) \subset \cap_{i=j}^{\infty} A_{i}=E_{j}$. Hence $x \in \cup_{n=j}^{\infty} E_{n}=D_{j}$ and so $D_{1} \subset D_{j}$.

Since $D_{j}=D_{1}$ for any $j>1$, we have $\cap_{j=1}^{\infty} D_{j}=\cap_{j=1}^{\infty} D_{1}=D_{1}=\cup_{n=1}^{\infty} \cap_{i=n}^{\infty} A_{i}$.
2. Proof. Put $C_{0}:=\left(\cup_{i=1}^{\infty} C_{i}\right)^{c}=\cap_{i=1}^{\infty} C_{i}^{c}$. Then, since $\cup_{i=0}^{\infty} C_{i}=C_{0} \cup\left(\cup_{i=1}^{\infty} C_{i}\right)=\left(\cup_{i=1}^{\infty} C_{i}\right)^{c} \cup$ $\left(\cup_{i=1}^{\infty} C_{i}\right)=S$ and $C_{0} \cap C_{j} \subset C_{j}^{c} \cap C_{j}=\emptyset$ (hence, $C_{0} \cap C_{j}=\emptyset$) for any positive integer j, we see that $C_{0}, C_{1}, C_{2}, \ldots$ constitute a partition. Result 11 therefore yields $P(A)=\sum_{i=0}^{\infty} P\left(A \cap C_{i}\right)=$ $P\left(A \cap C_{0}\right)+\sum_{i=1}^{\infty} P\left(A \cap C_{i}\right) \geq \sum_{i=1}^{\infty} P\left(A \cap C_{i}\right)$.

Examples. Flip a fair coin twice, so that $S=\{H H, H T, T H, T T\}$ with each element of S assigned $1 / 4$ probability. Put $C_{1}:=\{H H\}, C_{2}:=\{H T\}, C_{3}:=\{T H\}$, and $C_{j}:=\emptyset$ for $j \geq 4$. Hence, in the notation above, $C_{0}:=\{T T\}$. Then equality holds if $A \cap C_{0}=\emptyset$ (example, $A:=\{H H\}$) but does not hold if $A \cap C_{0}=\{T T\}$ (example, $A:=\{T T\}$).
3. Let A denote the event that you receive a flush and B denote the event that I receive a flush. For simplicity, let us assume that you are dealt all five of your cards before I am dealt any of mine. Then there are $\binom{52}{5}$ hands available to you, of which $4\binom{13}{5}$ yield a flush. (The 4 is needed because the flush could be in hearts, diamonds, clubs, or spades.) Hence $P(A)=4\binom{13}{5} /\binom{52}{5}$. After you receive your hand, there are $\binom{47}{5}$ hands available to me. If you have been dealt a flush, then there are 8 cards remaining in one suit and 13 cards remaining in each of the other three suits. Thus, among the hands available to me, $\binom{8}{5}+3\binom{13}{5}$ yield a flush. Hence $P(B \mid A)=\left(\binom{8}{5}+3\binom{13}{5}\right) /\binom{47}{5}$. Finally, the probability that both of us receive a flush is $P(A \cap B)=P(A) P(B \mid A)=4\binom{13}{5}\left(\binom{8}{5}+3\binom{13}{5}\right) /\left(\binom{47}{5}\binom{52}{5}\right)$.
4. The requirement $f(x) \geq 0$ necessitates $C_{1} \geq 1$. The requirement $\int_{\mathbb{R}} f(x) d x=1$ necessitates $\int_{C_{1}}^{C_{2}} \log x d x=C_{2}\left(\log C_{2}-1\right)-C_{1}\left(\log C_{1}-1\right)=1$. The latter equality has infinitely many solutions, for example $\left(C_{1}, C_{2}\right)=(1, e)$. There is not a simple algebraic formula by which C_{2} can be expressed in terms of C_{1}, so most of these solutions must be found numerically. As you should illustrate using R of other software of your choice, a graph of C_{1} and C_{2} values defining a valid probability density function asymptotically approaches (from above) the 45 degree line in a $C_{1} C_{2}$-plane. To get some insight into why this is so, note that $\log x$ increases very slowly for large x, so that $\int_{C_{1}}^{C_{2}} \log x d x \approx \int_{C_{1}}^{C_{2}} \log C_{1} d x=\left(C_{2}-C_{1}\right) \log C_{1}$ for large C_{1}, whence $C_{2} \approx C_{1}+1 / \log C_{1}$ for large C_{1}.
5. The claim is false. Here are two counterexamples.

Counterexample \#1. Put $f(x):=(1 / 2)^{|x|}$ for negative integers x. Then $f(x)$ defines a valid probability mass function since $f(x) \geq 0$ and $\sum_{j=1}^{\infty}(1 / 2)^{j}=1$. Also, $\{x \in \mathbb{R}: f(x)>0\}$, being the set of negative integers, is infinite. Yet, $F(1)=P(X \leq 1)=1$.

Counterexample \#2. Put $f(x):=x$ for $x \in\{(1 / 2),(1 / 4),(1 / 8), \ldots\}$. Then $f(x)$ defines a valid probability mass function since $f(x) \geq 0$ and $\sum_{j=1}^{\infty}(1 / 2)^{j}=1$. Also, $\{x \in \mathbb{R}: f(x)>0\}$, being in one-to-one correspondence with the set of positive integers, is infinite. Yet, $F(1)=P(X \leq 1)=1$.

