STA 623 - Fall 2013 - Dr. Charnigo

Written Assignment 2

Written Assignment 2 is due on Thursday 10 October at the end of class. You are encouraged to work in groups of two or three, but you may work individually if you prefer.
[30] 1. Decide whether each assertion below is true or false. If true, prove the assertion. If false, furnish a counterexample.
[10] a. Let X be a random variable whose probability density function $f_{X}(x)$ is continuous on its support $\mathcal{X}=(0, \infty)$. Suppose there exist constants $p>2, q>0$, and $r>0$ such that $f_{X}(x) \leq r$ and $\lim _{x \rightarrow \infty} x^{-p} / f_{X}(x)=q$. Then $E\left[X^{p-2}\right]$ exists finitely.
[10] b. Let X be a random variable whose probability density function $f_{X}(x)$ is continuous on its support $\mathcal{X}=(0, \infty)$. Suppose there exist constants $p>2$ and $q>0$ such that $\lim _{x \rightarrow \infty} x^{-p} / f_{X}(x)=q$. Then $E\left[X^{p-2}\right]$ exists finitely.
[10] c. Let X be a random variable whose probability density function $f_{X}(x)$ is continuous on its support $\mathcal{X}=(0, \infty)$. Suppose there exist constants $p>2$ and $q>0$ such that $\lim _{x \rightarrow \infty} x^{-p} / f_{X}(x)=q$. If p is an integer, then $E\left[X^{p-2}\right]=\left.\frac{d^{p-2}}{d t^{p-2}} M_{X}(t)\right|_{t=0}$.
[70] 2. Let X have probability density function $f_{X}(x):=\lambda^{2} x \exp [-\lambda x]$ for $x \in(0, \infty)$, where λ is a positive constant. The corresponding cumulative distribution function is $F_{X}(x):=1-\exp [-\lambda x](1+$ $\lambda x)$ for $x \in(0, \infty)$.
[10] a. Calculate $E[X]$ using the definitional formula $\int_{0}^{\infty} x f_{X}(x) d x$ and explicitly carrying out integration by parts.
[10] b. Calculate $E[X]$ using the definitional formula $\int_{0}^{\infty} x f_{X}(x) d x$ and appealing to the kernel method.
[10] c. Calculate $E[X]$ using the computational formula $\int_{0}^{\infty}[1-F(x)] d x$. (You may assume without proof that the computational formula is applicable.)
$[10]$ d. Calculate $E[X]$ by differentiating the moment generating function. (You may quote without proof the moment generating function provided in your textbook.)
[10] e. Put $Y:=\log [X]$. Find the cumulative distribution function of Y.
[10] f. Let Y be as in part e. Find the probability density function of Y by differentiating its cumulative distribution function.
[10] g. Let Y be as in part e. Find the probability density function of Y by applying the monotone transformation formula to $f_{X}(x)$.

