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1a. The statement is true. By the definition of limit, there exists M > 1 such that x > M implies

q/2 ≤ x−p/fX(x) ≤ 3q/2 and hence 2x−p/(3q) ≤ fX(x) ≤ 2x−p/q. We have

∫
∞

0

xp−2fX(x) dx =

∫ M

0

xp−2fX(x) dx+

∫
∞

M
xp−2fX(x) dx, (1)

with the first integral on the right side of (1) bounded above by
∫M
0

xp−2r dx = Mp−1r/(p−1) and

the second integral bounded above by
∫
∞

M 2x−2/q dx = 2/(qM). Thus,

0 ≤

∫
∞

0

xp−2fX(x) dx ≤ Mp−1r/(p − 1) + 2/(qM),

so that E[Xp−2] exists finitely.

1b. The statement is true. Let M be as in part a. We have

∫
∞

0

xp−2fX(x) dx =

∫
1

0

xp−2fX(x) dx+

∫ M

1

xp−2fX(x) dx+

∫
∞

M
xp−2fX(x) dx. (2)

Since xp−2 ≤ 1 when 0 ≤ x ≤ 1, the first integral on the right side of (2) is bounded above by∫
1

0
fX(x) dx ≤

∫
∞

0
fX(x) dx = 1. Since fX(x) is continuous on (0,∞), fX(x) is also continuous

on the compact interval [1,M ]. Any continuous function is bounded on a compact interval, and so

there exists t > 0 such that fX(x) ≤ t on [1,M ], even if fX(x) is unbounded on (0,∞). Therefore

the second integral on the right side of (2) is bounded above by
∫M
1

xp−2t dx ≤
∫M
0

xp−2t dx =

Mp−1t/(p − 1). And, as in part a, the third integral is bounded above by 2/(qM). Thus,

0 ≤

∫
∞

0

xp−2fX(x) dx ≤ 1 +Mp−1t/(p − 1) + 2/(qM),

so that E[Xp−2] exists finitely.

1c. The statement is false. We will show this by demonstrating that E[Xp] = ∞, so that MX(t)

cannot exist finitely in a neighborhood of 0 and, hence, the derivative in question does not exist.

Let M be as in part a. Since 2/(3q) ≤ xpfX(x) ≤ 2/q for x > M , we have

∫
∞

0

xpfX(x) dx ≥

∫
∞

M
xpfX(x) dx ≥

∫
∞

M
2/(3q) = ∞.

2a. We have E[X] =
∫
∞

0
λ2x2 exp[−λx] dx. Put u := λx2 and dv := λ exp[−λx] dx for integration

by parts, yielding E[X] = −λx2 exp[−λx]|∞
0

+
∫
∞

0
2λx exp[−λx] dx. The first piece is zero (apply

L’Hopital’s Rule if that is unclear), and the second piece can be addressed with another integration

by parts. We obtain E[X] = −2x exp[−λx]|∞
0

+
∫
∞

0
2 exp[−λx] dx. The first piece is zero, and the
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second piece is readily seen to be 2/λ.

2b. We recognize x2 exp[−λx] as the kernel of the gamma probability density function with shape

parameter 3 and rate parameter λ. The normalizing constant for this kernel is λ3/2, so that

E[X] =
∫
∞

0
λ2x2 exp[−λx] dx = 2/λ

∫
∞

0
(λ3/2)x2 exp[−λx] dx = 2/λ.

2c. We have E[X] =
∫
∞

0
exp[−λx](1 + λx) dx =

∫
∞

0
exp[−λx] dx +

∫
∞

0
λx exp[−λx] dx. The first

piece is readily seen to be 1/λ. The second piece can be integrated by parts (as in the second step

of part a), handled using the kernel method (noting that the normalizing constant for the gamma

probability density function with shape parameter 2 and rate parameter λ is λ2), or recognized as

the integral defining the mean of an exponential random variable with rate λ. In any case, one

obtains 1/λ, whence E[X] = 2/λ.

2d. The moment generating function is MX(t) = 1/(1 − t/λ)2 for t < λ. We obtain M ′

X(t) =

(2/λ)/(1 − t/λ)3 and hence E[X] = M ′

X(0) = 2/λ.

2e. For real y we have P (Y ≤ y) = P (logX ≤ y) = P (X ≤ exp[y]) = 1 − exp[−λ exp(y)](1 +

λ exp[y]).

2f. For real y we have d
dy
P (Y ≤ y) = fY (y) = λ2 exp(2y) exp[−λ exp(y)].

2g. For real y we have fY (y) = fX(exp[y]) d
dy

exp[y] = λ2 exp(2y) exp[−λ exp(y)].
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