STA 623 - Fall 2013 - Dr. Charnigo

Written Assignment 3 Solutions

1a. [This is not the only possible solution.] We have $f(x ; 1,1,1,1,1)=1_{0<x<1}=f(x ; 0,1,1,1,1)$ even though $(1,1,1,1,1)^{T} \neq(0,1,1,1,1)^{T}$.

1b. We have $f(x ; 0.5,2,1,1,2)=0.5 \times 2 x 1_{0<x<1}+0.5 \times 2(1-x) 1_{0<x<1}=1_{0<x<1}$ with $\gamma(1-\gamma)\left(\alpha_{1}-\alpha_{2}\right)\left(\beta_{1}-\beta_{2}\right)=0.5 \times 0.5 \times 1 \times-1=-0.25 \neq 0$.

1c. [This is not the only possible solution.] Suppose that

$$
\begin{equation*}
f\left(x ; \gamma, \alpha_{1}, \alpha_{2}, 1,1\right)=f\left(x ; \gamma^{\prime}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}, 1,1\right) \tag{1}
\end{equation*}
$$

with both $\gamma(1-\gamma)\left(\alpha_{1}-\alpha_{2}\right)>0$ and $\gamma^{\prime}\left(1-\gamma^{\prime}\right)\left(\alpha_{1}^{\prime}-\alpha_{2}^{\prime}\right)>0$. Using (1) we have

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} x^{1-\alpha_{2}} f\left(x ; \gamma^{\prime}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}, 1,1\right)=\lim _{x \rightarrow 0^{+}} x^{1-\alpha_{2}} f\left(x ; \gamma, \alpha_{1}, \alpha_{2}, 1,1\right)=\gamma \alpha_{2} \in(0, \infty) \tag{2}
\end{equation*}
$$

On the other hand, $\lim _{x \rightarrow 0^{+}} x^{1-\alpha_{2}} f\left(x ; \gamma^{\prime}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}, 1,1\right)$ would be 0 if $\alpha_{2}^{\prime}>\alpha_{2}$ and would be ∞ if $\alpha_{2}^{\prime}<\alpha_{2}$, which forces $\alpha_{2}^{\prime}=\alpha_{2}$. Thus, we have

$$
\lim _{x \rightarrow 0^{+}} x^{1-\alpha_{2}} f\left(x ; \gamma^{\prime}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}, 1,1\right)=\lim _{x \rightarrow 0^{+}} x^{1-\alpha_{2}^{\prime}} f\left(x ; \gamma^{\prime}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}, 1,1\right)=\alpha_{2}^{\prime} \gamma^{\prime}=\alpha_{2} \gamma^{\prime}
$$

and, in view of (2), $\alpha_{2} \gamma^{\prime}=\alpha_{2} \gamma$, whence $\gamma^{\prime}=\gamma$. Using (1) and the preceding conclusions that $\alpha_{2}^{\prime}=\alpha_{2}$ and $\gamma^{\prime}=\gamma$, we have

$$
\begin{equation*}
\int_{0}^{1} x f\left(x ; \gamma, \alpha_{1}, \alpha_{2}, 1,1\right) d x=\int_{0}^{1} x f\left(x ; \gamma^{\prime}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}, 1,1\right) d x=\int_{0}^{1} x f\left(x ; \gamma, \alpha_{1}^{\prime}, \alpha_{2}, 1,1\right) d x \tag{3}
\end{equation*}
$$

The left member of (3) is $(1-\gamma) \alpha_{1} /\left(1+\alpha_{1}\right)+\gamma \alpha_{2} /\left(1+\alpha_{2}\right)$, while the right is $(1-\gamma) \alpha_{1}^{\prime} /\left(1+\alpha_{1}^{\prime}\right)+$ $\gamma \alpha_{2} /\left(1+\alpha_{2}\right)$. The equality in (3) implies $\alpha_{1} /\left(1+\alpha_{1}\right)=\alpha_{1}^{\prime} /\left(1+\alpha_{1}^{\prime}\right)$, whence $\alpha_{1}=\alpha_{1}^{\prime}$. In summary, our supposition in (1) led to the conclusion that $\left(\gamma, \alpha_{1}, \alpha_{2}, 1,1\right)=\left(\gamma^{\prime}, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}, 1,1\right)$, which is to say that θ is identifiable under the indicated restrictions.

2a. Putting $u:=\tau x^{p}$ and $d u:=p \tau x^{p-1} d x$, we have $\int_{0}^{\infty} \exp \left[-\tau x^{p}\right] d x=\int_{0}^{\infty}(p \tau)^{-1} x^{1-p} \exp [-u] d u=$ $\int_{0}^{\infty}(p \tau)^{-1} u^{1 / p-1} \tau^{1-1 / p} \exp [-u] d u=p^{-1} \tau^{-1 / p} \Gamma[1 / p]$. Thus, the normalizing constant for the probability density function of X is $p \tau^{1 / p} / \Gamma[1 / p]$.

2 b . The family indexed by p and τ is not an exponential family; the quantity inside the exponential, namely $-\tau x^{p}$, cannot be expressed as a product of a function of x with a function of τ and p.

If there were a location parameter, call it $\mu(\tau, p)$, then there would have to exist τ^{\prime} and p^{\prime} such that $\mu\left(\tau^{\prime}, p^{\prime}\right)=\mu(1,1)-1$. Since the support set corresponding to $\mu(1,1)$ is $(0, \infty)$, the support set corresponding to $\mu\left(\tau^{\prime}, p^{\prime}\right)$ would have to be $(-1, \infty)$. However, no member of the family indexed by p and τ yields the support set of $(-1, \infty)$. Thus, there is no location parameter, and we cannot
have a location-scale family.

2c. For fixed p, the family indexed by τ is an exponential family because the probability density function has the representation $h(x) c(\tau) \exp [t(x) w(\tau)]$ with $h(x):=1_{x>0}, c(\tau):=p \tau^{1 / p} / \Gamma[1 / p]$, $t(x):=x^{p}$, and $w(\tau):=-\tau$.

This family is a scale family because the probability density function has the representation $g\left(x / \tau^{-1 / p}\right) / \tau^{-1 / p}$ with $g(u):=p \exp \left[-u^{p}\right] / \Gamma[1 / p] 1_{u>0}$.

2d. Suppose that $p>1$. We must show that $\int_{0}^{\infty} \exp [t x] \exp \left[-\tau x^{p}\right] d x<\infty$ for any fixed t. (The normalizing constant of the probability density function is irrelevant to whether the integral is finite, so we just ignore it here.) If $t \leq 0$, then from part a we have $\int_{0}^{\infty} \exp [t x] \exp \left[-\tau x^{p}\right] d x \leq$ $\int_{0}^{\infty} \exp \left[-\tau x^{p}\right] d x=p^{-1} \tau^{-1 / p} \Gamma[1 / p]<\infty$. If $t>0$, then there exists $x^{*}>0$ such that $t x-$ $\tau x^{p}<-(\tau / 2) x^{p}$ for $x>x^{*}$. We have $\int_{0}^{\infty} \exp [t x] \exp \left[-\tau x^{p}\right] d x=\int_{0}^{x^{*}} \exp [t x] \exp \left[-\tau x^{p}\right] d x+$ $\int_{x^{*}}^{\infty} \exp [t x] \exp \left[-\tau x^{p}\right] d x$. The integral from 0 to x^{*} is finite since the integrand is bounded on that interval, while the integral from x^{*} to ∞ is dominated by $\int_{x^{*}}^{\infty} \exp \left[-(\tau / 2) x^{p}\right] d x \leq \int_{0}^{\infty} \exp \left[-(\tau / 2) x^{p}\right] d x=$ $p^{-1}(\tau / 2)^{-1 / p} \Gamma[1 / p]<\infty$.

2e. Suppose that $p<1$. We must show that $\int_{0}^{\infty} \exp [t x] \exp \left[-\tau x^{p}\right] d x$ diverges for any $t>0$. To see this, note that there exists $x^{*}>0$ (not necessarily the same as in part d) such that $t x-\tau x^{p}>(t / 2) x$ for $x>x^{*}$. We have $\int_{0}^{\infty} \exp [t x] \exp \left[-\tau x^{p}\right] d x \geq \int_{x^{*}}^{\infty} \exp [t x] \exp \left[-\tau x^{p}\right] d x \geq \int_{x^{*}}^{\infty} \exp [(t / 2) x] d x$, and the latter integral is clearly divergent.

On the other hand, all of the moments exist. To see this, fix k and consider $\int_{0}^{\infty} x^{k} \exp \left[-\tau x^{p}\right] d x$. (Again, the normalizing constant is irrelevant to whether the integral is finite, so we just ignore it here.) Putting $u:=\tau x^{p}$ and $d u:=p \tau x^{p-1} d x$, we have $\int_{0}^{\infty} x^{k} \exp \left[-\tau x^{p}\right] d x=$ $\int_{0}^{\infty} \tau^{-(k+1) / p} p^{-1} u^{(k+1) / p-1} \exp [-u] d u=\tau^{-(k+1) / p} p^{-1} \Gamma[(k+1) / p]<\infty$.

2f. If $p=1$, then the family indexed by τ is the familiar exponential scale family.

