STA 623 — Fall 2013 — Dr. Charnigo

Written Assignment 3 Solutions

1a. [This is not the only possible solution.] We have $f(x; 1, 1, 1, 1, 1) = 1_{0 < x < 1} = f(x; 0, 1, 1, 1, 1)$ even though $(1, 1, 1, 1, 1)^T \neq (0, 1, 1, 1, 1)^T$.

1b. We have $f(x; 0.5, 2, 1, 1, 2) = 0.5 \times 2x 1_{0 < x < 1} + 0.5 \times 2(1 - x) 1_{0 < x < 1} = 1_{0 < x < 1}$ with $\gamma(1 - \gamma)(\alpha_1 - \alpha_2)(\beta_1 - \beta_2) = 0.5 \times 0.5 \times 1 \times -1 = -0.25 \neq 0.$

1c. [This is not the only possible solution.] Suppose that

$$f(x;\gamma,\alpha_1,\alpha_2,1,1) = f(x;\gamma',\alpha'_1,\alpha'_2,1,1)$$
(1)

with both $\gamma(1-\gamma)(\alpha_1-\alpha_2) > 0$ and $\gamma'(1-\gamma')(\alpha'_1-\alpha'_2) > 0$. Using (1) we have

$$\lim_{x \to 0^+} x^{1-\alpha_2} f(x;\gamma',\alpha_1',\alpha_2',1,1) = \lim_{x \to 0^+} x^{1-\alpha_2} f(x;\gamma,\alpha_1,\alpha_2,1,1) = \gamma \alpha_2 \in (0,\infty).$$
(2)

On the other hand, $\lim_{x\to 0^+} x^{1-\alpha_2} f(x; \gamma', \alpha'_1, \alpha'_2, 1, 1)$ would be 0 if $\alpha'_2 > \alpha_2$ and would be ∞ if $\alpha'_2 < \alpha_2$, which forces $\alpha'_2 = \alpha_2$. Thus, we have

$$\lim_{x \to 0^+} x^{1-\alpha_2} f(x;\gamma',\alpha_1',\alpha_2',1,1) = \lim_{x \to 0^+} x^{1-\alpha_2'} f(x;\gamma',\alpha_1',\alpha_2',1,1) = \alpha_2' \gamma' = \alpha_2 \gamma'$$

and, in view of (2), $\alpha_2 \gamma' = \alpha_2 \gamma$, whence $\gamma' = \gamma$. Using (1) and the preceding conclusions that $\alpha'_2 = \alpha_2$ and $\gamma' = \gamma$, we have

$$\int_0^1 x f(x;\gamma,\alpha_1,\alpha_2,1,1) \ dx = \int_0^1 x f(x;\gamma',\alpha_1',\alpha_2',1,1) \ dx = \int_0^1 x f(x;\gamma,\alpha_1',\alpha_2,1,1) \ dx.$$
(3)

The left member of (3) is $(1 - \gamma)\alpha_1/(1 + \alpha_1) + \gamma\alpha_2/(1 + \alpha_2)$, while the right is $(1 - \gamma)\alpha'_1/(1 + \alpha'_1) + \gamma\alpha_2/(1 + \alpha_2)$. The equality in (3) implies $\alpha_1/(1 + \alpha_1) = \alpha'_1/(1 + \alpha'_1)$, whence $\alpha_1 = \alpha'_1$. In summary, our supposition in (1) led to the conclusion that $(\gamma, \alpha_1, \alpha_2, 1, 1) = (\gamma', \alpha'_1, \alpha'_2, 1, 1)$, which is to say that θ is identifiable under the indicated restrictions.

2a. Putting $u := \tau x^p$ and $du := p\tau x^{p-1} dx$, we have $\int_0^\infty \exp[-\tau x^p] dx = \int_0^\infty (p\tau)^{-1} x^{1-p} \exp[-u] du = \int_0^\infty (p\tau)^{-1} u^{1/p-1} \tau^{1-1/p} \exp[-u] du = p^{-1} \tau^{-1/p} \Gamma[1/p]$. Thus, the normalizing constant for the probability density function of X is $p\tau^{1/p}/\Gamma[1/p]$.

2b. The family indexed by p and τ is not an exponential family; the quantity inside the exponential, namely $-\tau x^p$, cannot be expressed as a product of a function of x with a function of τ and p.

If there were a location parameter, call it $\mu(\tau, p)$, then there would have to exist τ' and p' such that $\mu(\tau', p') = \mu(1, 1) - 1$. Since the support set corresponding to $\mu(1, 1)$ is $(0, \infty)$, the support set corresponding to $\mu(\tau', p')$ would have to be $(-1, \infty)$. However, no member of the family indexed by p and τ yields the support set of $(-1, \infty)$. Thus, there is no location parameter, and we cannot

have a location-scale family.

2c. For fixed p, the family indexed by τ is an exponential family because the probability density function has the representation $h(x)c(\tau)\exp[t(x)w(\tau)]$ with $h(x) := 1_{x>0}$, $c(\tau) := p\tau^{1/p}/\Gamma[1/p]$, $t(x) := x^p$, and $w(\tau) := -\tau$.

This family is a scale family because the probability density function has the representation $g(x/\tau^{-1/p})/\tau^{-1/p}$ with $g(u) := p \exp[-u^p]/\Gamma[1/p]\mathbf{1}_{u>0}$.

2d. Suppose that p > 1. We must show that $\int_0^\infty \exp[tx] \exp[-\tau x^p] dx < \infty$ for any fixed t. (The normalizing constant of the probability density function is irrelevant to whether the integral is finite, so we just ignore it here.) If $t \leq 0$, then from part a we have $\int_0^\infty \exp[tx] \exp[-\tau x^p] dx \leq \int_0^\infty \exp[-\tau x^p] dx = p^{-1} \tau^{-1/p} \Gamma[1/p] < \infty$. If t > 0, then there exists $x^* > 0$ such that $tx - \tau x^p < -(\tau/2)x^p$ for $x > x^*$. We have $\int_0^\infty \exp[tx] \exp[-\tau x^p] dx = \int_0^{x^*} \exp[tx] \exp[-\tau x^p] dx + \int_{x^*}^\infty \exp[tx] \exp[-\tau x^p] dx$. The integral from 0 to x^* is finite since the integrand is bounded on that interval, while the integral from x^* to ∞ is dominated by $\int_{x^*}^\infty \exp[-(\tau/2)x^p] dx \leq \int_0^\infty \exp[-(\tau/2)x^p] dx = p^{-1}(\tau/2)^{-1/p}\Gamma[1/p] < \infty$.

2e. Suppose that p < 1. We must show that $\int_0^\infty \exp[tx] \exp[-\tau x^p] dx$ diverges for any t > 0. To see this, note that there exists $x^* > 0$ (not necessarily the same as in part d) such that $tx - \tau x^p > (t/2)x$ for $x > x^*$. We have $\int_0^\infty \exp[tx] \exp[-\tau x^p] dx \ge \int_{x^*}^\infty \exp[tx] \exp[-\tau x^p] dx \ge \int_{x^*}^\infty \exp[(t/2)x] dx$, and the latter integral is clearly divergent.

On the other hand, all of the moments exist. To see this, fix k and consider $\int_0^\infty x^k \exp[-\tau x^p] dx$. (Again, the normalizing constant is irrelevant to whether the integral is finite, so we just ignore it here.) Putting $u := \tau x^p$ and $du := p \tau x^{p-1} dx$, we have $\int_0^\infty x^k \exp[-\tau x^p] dx = \int_0^\infty \tau^{-(k+1)/p} p^{-1} u^{(k+1)/p-1} \exp[-u] du = \tau^{-(k+1)/p} p^{-1} \Gamma[(k+1)/p] < \infty$.

2f. If p = 1, then the family indexed by τ is the familiar exponential scale family.