STA 623 - Fall 2013 - Dr. Charnigo

Written Assignment 4

Written Assignment 4 is due on Thursday 21 November at the end of class. You are encouraged to work in groups of two or three, but you may work individually if you prefer.
[20] 1. Consider the joint probability density function $f_{X, Y}(x, y):=8 x y$ for $0<x<y<1$. In class we found the corresponding marginal probability density functions $f_{X}(x)$ and $f_{Y}(y)$.
[10] a. Calculate $f_{X}(x) f_{Y}(y)$ and compare to $f_{X, Y}(x, y)$. What do you conclude ?
[10] b. On the other hand, $8 x y$ is clearly the product of a function of x with a function of y. Does this contradict part a?
[10] 2. Let X have probability density function $f_{X}(x):=\lambda \exp (-\lambda x) 1_{x>0}$, where $\lambda>0$. Calculate $M_{X}(t)$ for $t \in(-\lambda, \lambda)$.
[10] 3. Let W have probability density function $f_{W}(w):=(\lambda / 2) \exp (-\lambda|w|)$, where $\lambda>0$. Calculate $M_{W}(t)$ for $t \in(-\lambda, \lambda)$.
[30] 4. Let X and Y be independent exponential random variables, each with mean $1 / \lambda$. What is the distribution of $X-Y$?
[10] a. Answer by finding $M_{X-Y}(t)$ for $t \in(-\lambda, \lambda)$.
[20] b. Answer by applying the bivariate transformation formula with $U:=X-Y$ and $V:=X+Y$.
[30] 5. Let X and Y be independent exponential random variables, each with mean $1 / \lambda$.
[10] a. Find the joint probability density function of X and $X+Y$. (If you like, you may introduce another symbol, such as V, for $X+Y$.)
[10] b. Find the marginal probability density function of $X+Y$. To what parametric family does this distribution belong ?
[10] c. Find the conditional probability density function of X given that $X+Y=c$, where c is some positive constant. To what parametric family does this distribution belong ?

