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Objectives

First ~80 minutes:

1. Be able to formulate a generalized linear mixed model for
longitudinal data involving a categorical and a 
continuous covariate.

2. Understand how generalized linear mixed modeling 
differs from logistic regression and linear mixed modeling.

Last ~40 minutes:

3. Be able to use PROC GLIMMIX to fit a generalized 
linear mixed model for longitudinal data involving a
categorical and a continuous covariate.



Motivating example
The Excel file at {www.richardcharnigo.net/glimmix}
contains a simulated data set:

Five hundred college freshmen (“ID”) are asked to 
indicate whether they have consumed marijuana 
during the past three months (“MJ”).  

The students are also assessed on negative urgency; 
the results are expressed as Z scores (“NegUrg”).

One and two years later (“Time”), most of the students 
supply updated information on marijuana 
consumption; however, some students drop out.



Motivating example
Two possible “research questions” are:

i. Is there an association between negative urgency 
and marijuana use at baseline ?

ii. Does marijuana use tend to change over time and, 
if so, is that change predicted by negative urgency 
at baseline ?

We can envisage more complicated and realistic 
scenarios ( e.g., with additional personality 
variables and/or interventions ), but this simple 
scenario will help us get a hold of generalized 
linear mixed modeling and PROC GLIMMIX.



Exploratory data analysis

Before pursuing generalized linear mixed (or other 
statistical) modeling, we are well-advised to 
engage in exploratory data analysis.

This can alert us to any gross mistakes in the data set, 
heretofore undetected, which may compromise 
our work.

This can also suggest a structure for the generalized 
linear mixed model and help us to anticipate what 
the results should be.



Exploratory data analysis

Variable Label N Minimum
Lower 

Quartile Median
Upper 

Quartile Maximum Mean Std Dev Skewness
Time
NegUrg
MJ

Time
NegUrg
MJ

1350
1350
1350

0.00
-2.68
0.00

0.00
-0.63
0.00

1.00
0.04
0.00

2.00
0.68
1.00

2.00
3.03
1.00

0.93
0.03
0.28

0.81
0.94
0.45

0.14
0.06
0.98

In this example, no gross mistakes are apparent. Having 
Z scores between -2.68 and +3.03 seems reasonable 
for a sample of size 500. The minimum and maximum 
values of time and marijuana use are correct, given 
that the latter is being treated dichotomously.



Exploratory data analysis
Table of MJ by negurgstratum

MJ(MJ) negurgstratum
Frequency
Percent
Row Pct
Col Pct 0 1 2 Total

0 105
21.00
26.79
91.30

207
41.40
52.81
80.54

80
16.00
20.41
62.50

392
78.40

1 10
2.00
9.26
8.70

50
10.00
46.30
19.46

48
9.60

44.44
37.50

108
21.60

Total 115
23.00

257
51.40

128
25.60

500
100.00

There is a clear association between negative urgency 
stratum and marijuana use during freshman year, 
with 8.7% of those low on negative urgency (bottom 
25%) using marijuana versus 19.5% for average 
(middle 50%) and 37.5% for high (top 25%).



Exploratory data analysis
Table of MJ by negurgstratum

MJ(MJ) negurgstratum
Frequency
Percent
Row Pct
Col Pct 0 1 2 Total

0 94
20.89
30.03
93.07

161
35.78
51.44
68.80

58
12.89
18.53
50.43

313
69.56

1 7
1.56
5.11
6.93

73
16.22
53.28
31.20

57
12.67
41.61
49.57

137
30.44

Total 101
22.44

234
52.00

115
25.56

450
100.00

A similar phenomenon is observed in sophomore year, 
but overall marijuana use has increased from 21.6% 
to 30.4%.



Exploratory data analysis
Table of MJ by negurgstratum

MJ(MJ) negurgstratum
Frequency
Percent
Row Pct
Col Pct 0 1 2 Total

0 81
20.25
30.45
88.04

139
34.75
52.26
65.88

46
11.50
17.29
47.42

266
66.50

1 11
2.75
8.21

11.96

72
18.00
53.73
34.12

51
12.75
38.06
52.58

134
33.50

Total 92
23.00

211
52.75

97
24.25

400
100.00

By junior year, marijuana use has increased to 33.5%.



First generalized linear mixed model
Let  Yjk denote subject  j’s  marijuana use at time  k.  

Because  Yjk is dichotomous, we cannot employ a 
linear mixed model, which assumes a continuous 
(in fact, normally distributed) outcome.

However, consider these three equations:

logit{P(Yjk = 1)} = a0 + a1 k,  if subject  j  is low

logit{P(Yjk = 1)} = b0 + b1 k,  if subject  j  is average

logit{P(Yjk = 1)} = c0 + c1 k,  if subject  j  is high 
on negative urgency,

where  logit{x}  is defined as  log( x / (1-x) ).



First generalized linear mixed model
Three comments are in order:

First, the generalized linear mixed model defined by 
the three equations can be expressed as a logistic 
regression model.  Let  X1 and  X2 respectively be 
dummy variables for low and high negative 
urgency.  Then we may write

logit{P(Yjk = 1)} = b0 + (a0 – b0) X1j + (c0 – b0) X2j +
( b1 + (a1 – b1) X1j + (c1 – b1) X2j ) k.

Indeed, just as linear regression is a special case of 
linear mixed modeling, logistic regression is a 
special case of generalized linear mixed modeling.



First generalized linear mixed model

Second, we are in essence logistic-regressing 
marijuana use on time but allowing each subject to 
have one of three intercepts and one of three 
slopes, according to his/her negative urgency.

Third, our research questions amount to asking 
whether  a0 , b0 , c0 differ from each other, 
whether  a1 , b1 , c1 differ from zero, and
whether  a1 , b1 , c1 differ from each other.



First generalized linear mixed model
Now let us examine the results from fitting the 

generalized linear mixed model using PROC 
GLIMMIX.

We see that PROC GLIMMIX used all available 
observations ( 1350 ), including observations from 
the 100 subjects who dropped out early.  

Number of Observations Read 1350
Number of Observations Used 1350



First generalized linear mixed model
The estimates of the intercepts  a0 , b0 , c0 are  -2.48, 

-1.33,  and  -0.45.  The estimates of the slopes  a1, 
b1 , c1 are  0.18,  0.38,  and  0.31.  Exponentiating 
the latter gives us estimates of the factors by 
which the odds of marijuana use get multiplied 
each year, within each of the negative urgency 
strata.  For example, exp(0.3143) = 1.369  in the 
high stratum.

Parameter Estimates

Effect negurgstratum Estimate
Standard 

Error DF t Value Pr > |t|
negurgstratum 0 -2.4795 0.3179 1344 -7.80 <.0001
negurgstratum 1 -1.3264 0.1386 1344 -9.57 <.0001
negurgstratum 2 -0.4531 0.1668 1344 -2.72 0.0067
Time*negurgstratum 0 0.1815 0.2424 1344 0.75 0.4542
Time*negurgstratum 1 0.3750 0.1049 1344 3.58 0.0004
Time*negurgstratum 2 0.3143 0.1361 1344 2.31 0.0211



First generalized linear mixed model
We can also use PROC GLIMMIX to estimate any 

linear combinations of  a0 , b0 , c0 , a1 , b1 , c 1.  For 
example, below are estimates of  

c0 – a0
( high vs. low negative urgency freshmen ),
( c0 + c1 ) – ( a0 + a1 )
( high vs. low negative urgency sophomores ), and
( c0 + 2c1 ) – ( a0 + 2a1 )
( high vs. low negative urgency juniors ).

Again, exponentiation will yield estimated odds ratios.
Estimates

Label Estimate Standard Error DF t Value Pr > |t|
High vs low freshman 2.0264 0.3590 1344 5.64 <.0001
High vs low sophomore 2.1592 0.2270 1344 9.51 <.0001

High vs low junior 2.2919 0.3589 1344 6.39 <.0001



Second generalized linear mixed model
As noted earlier, our first generalized linear mixed 

model can be expressed as a logistic regression 
model.  How, then, does generalized linear mixed 
modeling go beyond logistic regression ?

The answer is that we may also allow each subject to 
have his/her own personal intercept and slope, not 
merely choose from among three intercepts and 
three slopes.  This can capture correlations among 
repeated measurements on that subject.  The 
personal intercept and slope may be related to 
negative urgency and to unmeasured factors.  For 
simplicity in what follows, however, we will confine 
attention to a personal intercept.



Second generalized linear mixed model
More specifically, we propose the following:

logit{P(Yjk = 1)} = b0 + (a0 – b0) X1j + (c0 – b0) X2j + P1j
+ ( b1 + (a1 – b1) X1j + (c1 – b1) X2j ) k.

Above,  P1j is an unobserved zero-mean variable that 
adjusts the intercept for subject  j.  Thus, the 
interpretations of  a0 , b0 , c0 are subtly altered.  
They are now the average intercepts for subjects 
who are low, average, and high on negative 
urgency.

Even so, our research questions are still addressed by 
estimating  a0 , b0 , c0 , a1 , b1 , c1.



Second generalized linear mixed model
While we can “predict”  P1j from the data, in practice 

this is rarely done.  However, its variance is 
routinely estimated.

Covariance Parameter Estimates

Cov Parm Subject Estimate Standard Error
UN(1,1) ID 1.2456 0.3290

Solutions for Fixed Effects

Effect negurgstratum Estimate
Standard 

Error DF t Value Pr > |t|
negurgstratum 0 -2.9656 0.3689 847 -8.04 <.0001

negurgstratum 1 -1.6720 0.1859 847 -8.99 <.0001

negurgstratum 2 -0.5848 0.2156 847 -2.71 0.0068

Time*negurgstratum 0 0.2225 0.2538 847 0.88 0.3810

Time*negurgstratum 1 0.4632 0.1193 847 3.88 0.0001

Time*negurgstratum 2 0.4116 0.1576 847 2.61 0.0092



Second generalized linear mixed model
Some care is now required in interpreting odds ratio 

estimates.  For example, exp(2.3808) = 10.81  
says that a freshman high on negative urgency is 
estimated to have  10.81  times the odds of using 
marijuana versus a freshman low on negative 
urgency, controlling for whatever unmeasured 
factors contribute to the personal intercepts.

Estimates

Label Estimate
Standard 

Error DF t Value Pr > |t|
High vs low freshman 2.3808 0.4195 847 5.68 <.0001

High vs low sophomore 2.5699 0.3046 847 8.44 <.0001

High vs low junior 2.7590 0.4327 847 6.38 <.0001



Second generalized linear mixed model
Which model is better: the first or second ?

Conceptually, the second model is appealing because  
P1j captures correlations among the repeated 
observations on subject  j.  Thus, we avoid the 
unrealistic assumption, present in logistic 
regression, that observations are independent.

Empirically, we may examine a model selection 
criterion such as the BIC; a smaller value is better.  
Here are results for the first and second models.

Fit Statistics
-2 Log Likelihood 1467.29
AIC  (smaller is better) 1479.29
AICC (smaller is better) 1479.35
BIC  (smaller is better) 1510.54

Fit Statistics
-2 Log Likelihood 1432.21
AIC  (smaller is better) 1446.21
AICC (smaller is better) 1446.29
BIC  (smaller is better) 1475.71



Third generalized linear mixed model

So far we have treated negative urgency as 
categorical, but this is not necessary and perhaps 
not optimal.  Let us now consider the following:

logit{P(Yjk = 1)} = ( d0 + e0 Nj + P1j ) + ( d1 + e1 Nj ) k.

Above,  Nj denotes the continuous negative urgency 
variable,  while  P1j is, as before, an adjustment to 
the intercept.



Third generalized linear mixed model

Since negative urgency was expressed as a  Z  score,  
d0 is the average intercept and  d1 is the slope 
among those average on negative urgency.

Likewise,  d0 + e0 is the average intercept and          
d1 + e1 is the slope among those one standard 
deviation above average on negative urgency.

And,  d0 – e0 is the average intercept and  d1 – e1 is 
the slope among those one standard deviation 
below average on negative urgency.



Third generalized linear mixed model
We estimate the variance of  P1j as well as estimating  

d0 , e0 , d1 , e1 .

Covariance Parameter Estimates
Cov Parm Subject Estimate Standard Error
UN(1,1) ID 0.9766 0.2923

Solutions for Fixed Effects

Effect Estimate Standard Error DF t Value Pr > |t|
Intercept -1.7364 0.1501 498 -11.56 <.0001

NegUrg 1.0781 0.1500 848 7.19 <.0001

Time 0.4203 0.09476 848 4.44 <.0001

NegUrg*Time 0.02515 0.1052 848 0.24 0.8111



Third generalized linear mixed model

In addition, we may estimate linear combinations of
d0 , e0 , d1 , e1 .  For example,  2e0 compares 
freshmen one standard deviation above to 
freshmen one standard deviation below,  2e0 + 2e1
compares such sophomores, and  2e0 + 4e1 
compares such juniors.  Moreover, the BIC prefers 
this model over either of the first two. 

Estimates

Label Estimate
Standard 

Error DF t Value Pr > |t|
High vs low freshman 2.1562 0.2999 848 7.19 <.0001
High vs low sophomore 2.2065 0.2195 848 10.05 <.0001
High vs low junior 2.2569 0.3080 848 7.33 <.0001

Fit Statistics
-2 Log Likelihood 1391.30

AIC  (smaller is better) 1401.30

AICC (smaller is better) 1401.35

BIC  (smaller is better) 1422.38



What’s next ?
Now we will launch SAS and examine the PROC 

GLIMMIX implementations of the three 
generalized linear mixed models.

In addition, although beyond the scope of today’s 
presentation, I mention that there are versions of 
generalized linear mixed models that 
accommodate responses which are neither 
normally distributed nor dichotomous.  The most 
common is a version that accommodates 
responses which are Poisson distributed; this is 
useful when the outcome of interest is a count 
(e.g., how many times a person engages in a 
particular behavior).


