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Motivation

Suppose we want to understand the relationship between a 
dependent variable (also called: outcome variable, response 
variable) and several independent variables (also called: 
explanatory variables, predictor variables).

As a running example throughout this workshop, we will consider 
(fictional) data on salary, age, experience, education, and 
urban/rural status for 100 employees.  We will regard salary as a 
dependent variable and the other four attributes as independent 
variables from which salary is to be predicted.  (See Sheet 1 of the 
accompanying Excel file.)



Motivation

Although we might calculate a correlation between (or perform a 
simple linear regression involving) salary and each of the four 
independent variables (and we do so on Sheet 1, though this may 
not be strictly appropriate with urban/rural status), there are at 
least four reasons why such calculations might be insufficient:

1. Desire for unambiguous prediction of outcome, utilizing all 
independent variables.  Instead of trying to reconcile four 
disparate predictions based on the four independent variables 
individually (using the trend lines displayed in the graphs of 
Sheet 1), we might prefer to have a single prediction combining 
information from all four independent variables.



Motivation

2. Desire for quantification of how well an outcome can be predicted 
from multiple independent variables collectively.  By itself age 
explains 56% of the variation in salary, and by itself experience 
explains 55% of the variation in salary.  Clearly the two combined 
do not explain 111% of the variation in salary, so what we desire 
cannot be obtained by correlation (or simple linear regression).

3. Desire to exhibit adjusted rather than unadjusted relationships.  
Age is strongly positively related to salary.  But age is also 
positively related to experience, which itself is positively related 
to salary.  If we adjust for experience, does age still matter ?  Put 
differently, is the relationship between age and salary due solely 
to their mutual relationship with experience ?



Motivation / Formulation

4. Desire to test whether the association of one independent 
variable with the outcome depends on the level of another 
independent variable.  For example, is education level more 
strongly related to salary in an urban setting or in a rural one ?

To address these questions, we may fit a multiple linear regression 
model, which is expressed symbolically as follows:

Y = b0 + b1 X1 + b2 X2 + … + bk Xk + error

Here,  Y  is the outcome,  X1 through  Xk are predictors,  and the 
error is a random quantity satisfying certain assumptions.



Formulation

More specifically, the error is assumed to follow a normal 
distribution with mean  0  and standard deviation  σ.  The 
standard deviation is assumed to be fixed, unrelated to  X1
through  Xk.  Errors for different subjects are assumed to be 
independent.

We interpret  b1 as the amount by which the outcome is predicted 
(but not guaranteed !) to change when  X1 increases by one unit, 
with  X2 through  Xk fixed.  If a one unit change is not 
meaningful, we may also note that  c b1 is the amount by which 
the outcome is predicted to change when  X1 increases by  c  
units, again with  X2 through  Xk fixed.  



Formulation

If  X1 is a logarithm of some underlying quantity, then   LN(2) b1 is 
the amount by which the outcome is predicted to change when 
the underlying quantity doubles, with  X2 through  Xk fixed. 

If  Y  is a logarithm of some underlying quantity, then the predicted 
value of the underlying quantity is  multiplied by   exp(c b1)   
when  X1 increases by  c  units, with  X2 through  Xk fixed.

If both  Y  and  X1 are logarithms of underlying quantities, then the 
predicted value of the quantity underlying  Y  is multiplied by           
exp( LN(2)  b1 ) = 2b1 when the quantity underlying  X1 is 
doubled,  with  X2 through  Xk fixed.



Formulation

Although  b0, b1, …, bk are unknown, we may estimate them using 
the principle of least squares. The estimates, which we may call  
b0

*, b1
*, …, bk

*,  satisfy the following inequality:

∑ (Y – b0
* - b1

* X1 - … - bk
* Xk)2 < ∑ (Y – a0 – a1 X1 - … - ak Xk)2,

where  a0, a1, …,  ak are any numbers.  

The least squares estimates are, in a very specific mathematical 
sense (on which I shall unfortunately not be able to elaborate 
here), values for  b0, b1, …, bk which would have been most likely 
to generate data similar to what we actually observed.



Formulation

Alternatively and perhaps more intuitively, we may regard  
b0

* + b1
* X1 + …. + bk

* Xk as the best available “prediction” for  Y.

Thus,  ∑ (Y – b0
* - b1

* X1 - … - bk
* Xk)2 is called a residual sum of 

squares.  I also note that   ∑ (b0
* + b1

* X1 - … + bk
* Xk – mean(Y))2

is called a regression sum of squares and that  ∑ (Y – mean(Y))2

is called a total sum of squares.



Exploring the data

Graphs of the type shown on Sheet 1, though not sufficient in and 
of themselves, are useful for preliminary assessment of whether a 
proposed multiple linear regression model makes sense.

In essence, we may ask whether we believe that the expected value 
of  Y  should be expressed as  b0 + b1 X1 + b2 X2 + … + bk Xk.  
While this appears a bit complicated because of the multiple 
independent variables, this is actually about the simplest 
possibility we might consider.  In particular, there are no 
nonlinear terms.  (If you have had calculus, the mathematical 
rationale for the aforementioned expression is that it represents 
a first-order Taylor approximation.)



Exploring the data

The graphs on Sheet 1 actually look pretty decent.  However, we 
notice that the trend lines for the graphs involving age and 
education do not quite fit the patterns of data points.  Although 
not markedly so, these patterns appear nonlinear.

Another concern, which is not evident from the graphs nor from 
simple diagnostic changes on individual variables (like 
examining minimum and maximum), is with the first subject, 
who is alleged to have 31 years of experience at age 39.  Since I 
made up the (fictional) data, I know that the 31 “should” be 13.



A first attempt at modeling

These two issues noted, let us still proceed with a multiple linear 
regression analysis and see what happens.  Using the Data 
Analysis add-in to Excel, one can obtain the results on Sheet 1R; I 
will demonstrate now.  I have annotated these results in detail, 
so let’s discuss them…

In summary, about 63% of variability in salary is explained by the 
four independent variables, and a typical random error is about 
$16,000.  At fixed levels of education and experience, and in a 
fixed geographic setting, each year of age adds about $800 to the 
predicted salary.  This is statistically significant (p-value = 
0.020).  Experience and education are also statistically 
significant, but geographic setting is not.



A second attempt at modeling

On Sheet 2 I have corrected the 31 to a 13 and used Excel to display 
exponential rather than linear trend lines in the graphs.  (This is 
essentially equivalent to asserting linear relationships with  Y  re-
defined to be the natural logarithm of salary rather than salary 
itself; that is why I have created a new column “LogSalary”.)

The results appear on Sheet 2R.  About 65% of variability in log 
salary is explained by the four independent variables, and a 
typical random error is about 20%-25% of the expected salary.  
The 65% can’t be directly compared to the 63% obtained earlier; 
however, when I express predictions on the original scale and 
calculate residuals on the original scale, I obtain that 64% of 
variability in salary (not log salary) is explained.



A third attempt at modeling

On Sheet 3 I have defined a new variable “UrbanEdu” as the 
product of the urban and education variables.  I have also 
created scatterplots depicting the relationships between salary 
and each of the three continuous variables, in rural and urban 
settings.

Note that the curve relating salary to education appears steeper in 
the rural setting than in the urban setting, suggesting an 
interaction: education appears to be more determinative of 
salary in the rural setting. 



A third attempt at modeling

If I include “UrbanEdu” in the regression model along with the 
four independent variables, I obtain the results shown on 
Sheet3R.  Now about 67% of variability in log salary is explained.

Note that the coefficient estimates for education, urban, and 
UrbanEdu are statistically significant with respective p-values 
0.001, 0.024, and 0.036.  What does this represent ?

We must consider how education can increase by one unit without 
any other variable increasing; clearly this is possible only when 
urban = 0 (since otherwise UrbanEdu would change with 
education)…



A third attempt at modeling

Hence, the p-value of 0.001 indicates that education is a significant 
predictor of (log) salary in the rural setting.  This p-value does 
not say anything about whether education is (or is not) a 
significant predictor of salary in the urban setting.

The p-value of 0.024 indicates that urban is a significant predictor 
of salary when there is no education.  This is meaningless, 
however, because everyone has at least 12 years of education.

The p-value of 0.036 indicates a significant interaction between 
education and urban.  More specifically…



A third attempt at modeling

…the estimated change in average log salary in moving from a rural 
setting to an urban setting is  0.887 – 0.049 X,  where  X  is the 
number of years of education.   This corresponds to predicted 
salary being multiplied by  exp(0.887 – 0.049 X) =   2.43 X -0.049 

in moving from a Rural setting to an Urban setting.

A “tradeoff” occurs around  X ≈ 18.  For persons with less 
education, salary tends to be higher in an urban setting; for 
persons with more education, salary tends to be higher in a rural 
setting.



A third attempt at modeling

Moreover, each year of education multiplies the predicted salary by  
exp(0.0599 – 0.0493 Z),  where  Z  denotes urban status.  Since  Z  
can only equal  0  or  1, this is either  exp(0.0599) ≈ 1.06  or  
exp(0.0106) ≈ 1.01.

We may ask, is the  0.0106  significantly different from  0 ? 
Equivalently, is the  1.01  significantly different from  1 ?  The 
Excel output doesn’t seem to give the answer to that question, 
but we could obtain it by appropriately defining a new variable  
“RuralEdu”  and using it instead of  “UrbanEdu”.



Potential pitfalls and limitations

A lot of things can go “wrong” with multiple linear regression.  
Some of them may be readily addressed; others may not.  
Consulting with a statistician, when in doubt, is a good idea.

1. Relationships may be nonlinear.  If the nonlinearity is not too 
severe, you may be able to ignore it or accommodate it through a 
simple transformation (e.g., logarithmic).  However, if the 
nonlinearity is pronounced, you may need a polynomial, 
nonparametric, or semiparametric model.  While a polynomial 
model may seem appealing because of its availability in Excel, 
the resulting coefficient estimates are difficult to interpret.



Potential pitfalls and limitations

2. Assumptions regarding the error terms may not be satisfied:

a. If independence fails (as may occur with time series data, or 
repeated measurements on the same persons), you may need a 
more general statistical model.  

b. If normality fails (and a transformation cannot fix the 
problem), a variant called “robust regression” – a modification of 
least squares – can be used.

c. If fixed variance fails, another variant called “weighted least 
squares” can be used.



Potential pitfalls and limitations

3. We implicitly assume that we have the “correct” variables.  This 
has both substantive and mathematical components:

a. Substantively (i.e., in terms of the underlying subject matter), 
we may not know which variables are “correct”.  Even if we do, 
they may not have been measured (especially if we work with 
secondary data) or may not be measurable.

b. Moreover, even if we have the correct variables, we may not 
think to look for interactions.  Because the number of possible 
interactions generally exceeds the number of predictors (two 
continuous predictors can interact with each other !), checking 
for each possible interaction may be cumbersome.



Potential pitfalls and limitations

c. Mathematically, we cannot effectively estimate a large number 
of parameters from a small number of observations.  So, even if 
we knew that  20  predictor variables were potentially relevant, 
trying to include all of them in a model based on a sample of size  
50  would be imprudent.  Collinearity may also be an issue.

d. Due to both substantive and mathematical issues, being able 
to select variables for a regression model is essential.  Note that 
we cannot use R2 for this purpose, if the number of variables has 
not been fixed a priori.  A common variable selection technique, 
easy to implement in Excel though probably not optimal, is 
backward elimination.  



Practice exercises

Here are some practice exercises, if you wish to go beyond 
replicating my analyses:

1. Assuming that urban/rural setting interacts with age (even if the 
p-value is not significant) in a regression model for log salary, 
estimate the amount by which predicted salary is multiplied for 
each year of age in a rural setting.  Is this significantly different 
from 1 ?

2. Continuing, estimate the amount by which predicted salary is 
multiplied for 10 years of age in an urban setting.  Is this 
significantly different from 1 ?



Practice exercises

3. Continuing, estimate the amount by which predicted salary is 
multiplied when a 45-year-old moves from a rural setting to an 
urban one ?  Is this significantly different from  1 ?  (Hint: Define a 
new variable which is the product of  {Age – 45} × Urban.)

4. What part of variability in log salary is explained by a model in 
which age interacts with urban/rural status ?  Following work 
similar to that on Sheet 2R, what part of variability in salary (not 
log salary) is explained by such a model ?

5. How do your answers to the preceding questions change, if we 
model salary directly (rather than log salary) ?
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